
UNIVERSITAS INDONESIA

MODEL-DRIVEN ENGINEERING FOR DELTA-ORIENTED

SOFTWARE PRODUCT LINES

DISSERTATION SUMMARY

MAYA RETNO AYU SETYAUTAMI

1706125134

FAKULTAS ILMU KOMPUTER

PROGRAM STUDI DOKTOR ILMU KOMPUTER

DEPOK

2023

ABSTRACT

Name : Maya Retno Ayu Setyautami
Study Program : Doktor Ilmu Komputer
Title : Model-Driven Engineering for Delta-Oriented Software Product

Lines

Software product line engineering (SPLE) is an approach that enables the development
of software with shared commonality and variability. It offers a reusable mechanism for
creating various products within a specific domain. In this research, we aim to design a
model-driven SPLE (MDSPLE) approach based on delta-oriented programming (DOP).
The proposed approach encompasses the SPLE process in both the problem and solution
domains. In the problem domain, we use feature models and Unified Modeling Language
(UML). A UML profile, namely the UML-VM profile, s defined based on variability
modules (VM) to model variations in UML diagrams. We introduce a new implementation
approach called Variability Modules for Java (VMJ) in the solution domain. VMJ is
an architectural pattern in Java that follows DOP principles. Furthermore, we employ
the Interaction Flow Modeling Language (IFML) with DOP extension to model abstract
user interfaces (UI). A set of tools has been designed within the Eclipse IDE to support
the development process, called Prices-IDE. The process in Prices-IDE encompasses
modeling in the diagram editors, model transformation, domain implementation, and
product generation. The practical application of the proposed MDSPLE approach is
demonstrated through a case study. The evaluation of the approach focuses on three
perspectives: the applicability of the UML-VM profile as a foundation, the degree of
automation in the code generator, and the process improvement. We also discuss threats
that could affect the validity of this research. In conclusion, this research contributes to
the advancement of SPLE methodologies based on DOP through the proposed MDSPLE
approach.

Keywords:
delta-oriented programming, model-driven, software product line engineering, uml-profile,
variability modeling

ii Universitas Indonesia

TABLE OF CONTENTS

ABSTRACT . ii

TABLE OF CONTENTS . iii

LIST OF FIGURES . v

LIST OF TABLES . vi

LIST OF CODES . vii

1 INTRODUCTION . 1
1.1 Background . 1
1.2 Research Questions . 3
1.3 Research Objectives . 4
1.4 Research Limitations . 4
1.5 Research Contributions . 4

2 THEORETICAL FOUNDATIONS . 6
2.1 Model-driven Software Engineering . 6
2.2 Software Product Line Engineering . 7
2.3 Delta-Oriented Programming . 8
2.4 Related Work . 9

3 RESEARCH METHODOLOGY . 13
3.1 Research Methodology . 13
3.2 Research Stage . 14

4 MODEL-DRIVEN SPLE . 17
4.1 MDSPLE Approach . 17
4.2 MDSPLE Framework for Web Development 18
4.3 The UML-DOP Profile . 20
4.4 The IFML-DOP Extension . 22

5 VARIABILITY MODULES FOR JAVA . 25
5.1 Variability Module . 25
5.2 Architectural Pattern in Java . 25

5.2.1 Decorator Pattern . 27
5.2.2 Factory Pattern . 30

5.3 UML-VM Profile . 31

6 PRICES-IDE . 32
6.1 Prices-IDE Design . 32

iii Universitas Indonesia

6.2 UML to WinVMJ Tool . 34
6.3 FeatureIDE WinVMJ Composer . 38
6.4 IFML to UI Generator . 39
6.5 Running Example: Charity Organization System 40

6.5.1 Domain Analysis . 40
6.5.2 Domain Implementation . 45
6.5.3 Product Generation . 48

7 EVALUATION . 51
7.1 Analysis of Variability Modeling . 51
7.2 Applicability of the UML-VM Profile 55
7.3 Automated Code Generation . 56
7.4 Process Improvement . 57
7.5 Threats to Validity . 59

7.5.1 Internal Validity . 59
7.5.2 External validity . 60

8 CONCLUSION AND FUTURE WORK . 62
8.1 Conclusion . 62
8.2 Future Work . 63

REFERENCES . 64

GLOSSARY . 71

iv Universitas Indonesia

LIST OF FIGURES

Figure 2.1. SPLE Framework . 7
Figure 2.2. Model-driven SPLE research . 10
Figure 2.3. Web-based SPLE research . 11

Figure 3.1. Research Flow . 15

Figure 4.1. MDSPLE design based on DOP, adopted from Apel et al. (2013) . . 18
Figure 4.2. MDSPLE framework for web development 20
Figure 4.3. IFML Diagram: Income . 23
Figure 4.4. IFML-DOP Extension . 24

Figure 5.1. Problem Solution Mapping . 26
Figure 5.2. Schema of VMJ Architectural Pattern 27
Figure 5.3. Applying the decorator pattern . 28
Figure 5.4. UML-VM profile diagram . 31

Figure 6.1. MDSPLE Process - VMJ . 33
Figure 6.2. Prices-IDE Plugins . 34
Figure 6.3. UML transformation . 36
Figure 6.4. Package diagram - UML to WinVMJ tool 37
Figure 6.5. IFML to UI Generator Flow . 39
Figure 6.6. Analysis Process with AR Matrix 41
Figure 6.7. AMANAH Feature Diagram . 43
Figure 6.8. UML-VM diagram of FinancialReport module 44
Figure 6.9. Generated WinVMJ modules for FinancialReport variants 46
Figure 6.10. IFML-DOP diagram - FinancialReport 47
Figure 6.11. Feature selection - BisaKita product 48
Figure 6.12. Product - BisaKita . 50

Figure 7.1. A new feature in AMANAH feature diagram 58

v Universitas Indonesia

LIST OF TABLES

Table 2.1. A comparison table of state-of-the-art approaches 11

Table 4.1. Mapping of DOP elements to UML stereotypes 21

Table 6.1. Transformation Rules . 35
Table 6.2. Charity Organization Websites . 41
Table 6.3. Application-Requirements (AR) Matrix - Charity Organization Websites 42

Table 7.1. Comparison of MDSPLE approach for web-based SPLs 52
Table 7.2. Comparison of Generated and Complete Source Code 57
Table 7.3. Comparison of Requirements Changes in WinVMJ and Spring Boot . . 59

vi Universitas Indonesia

LIST OF CODES

5.1 Financial Report: Component Class . 28
5.2 Financial Report: Implementing Class 29
5.3 Delta Income . 29
5.4 Factory class FinancialReport . 30
6.1 Mapping Feature to Module . 46

vii Universitas Indonesia

CHAPTER 1

INTRODUCTION

In this chapter, we describe the introduction of the research to illustrate the background
and motivation. We state the research objectives and formulate the problems as research
questions. At the end of this chapter, we summarize the research contribution.

1.1 Background

Software product line engineering (SPLE) is a software development approach based on
commonality and variability (Clements & Northrop, 2002; Pohl et al., 2005). It offers a
systematic reusability for developing a range of products within a specific domain, utilizing
platforms and mass customization. Platforms enable the reuse of common components,
while mass customization effectively manages variability. For instance, consider a series
of smartphones with standard features such as contact, calendar, and messaging. Each
smartphone type also exhibits variations in resolution, screen size, and storage capacity. By
employing SPLE, such variability can be managed systematically, enabling the generation
of various products based on selected features.

In contrast, without SPLE, similar products with variations are typically developed using
a traditional approach known as clone-and-own. In this approach, an existing project is
cloned into a separate repository to develop a different product. Any required modifications
to a specific product are made within the new repository. Although all products use
the same initial source code (codebase), this approach leads to scattered modifications
across repositories. Requirements changes are difficult to trace, and variability cannot be
managed systematically. Moreover, as the number of variations increases, development
costs escalate, and the maintenance process becomes complex due to the separate source
code management in individual repositories.

The adoption of SPLE, as emphasized by Pohl et al. (2005), is motivated by several key
factors: reduction of development costs, enhancement of software quality, and reduced
time to market. One of the challenges in SPLE is the lack of sufficient tool support
to facilitate the application of product line engineering principles (Pohl et al., 2005).
To address this, a model-driven approach is designed in this research to support SPLE

1 Universitas Indonesia

2

implementation. Model-driven software engineering (MDSE) enhances the benefits of
modeling through automated code generation. Previous studies by Ouali et al. (2013);
Martinez et al. (2015); Arboleda & Royer (2012); Hernández-López et al. (2018) have
proposed the model-driven approach for SPLE (MDSPLE). Ouali et al. (2013); Martinez et
al. (2015) focused on modeling the problem domain and provided supportive tools for the
modeling process. Meanwhile, Arboleda & Royer (2012); Hernández-López et al. (2018)
proposed the MDSPLE approach that encompasses both the problem and solution domains.
They designed the automation process for generating applications based on aspect-oriented
programming (AOP).

This research makes a new contribution to MDSPLE by incorporating delta-oriented
programming (DOP) within problem and solution domains. DOP is a paradigm that
leverages core and delta modules for implementing SPLE (Schaefer et al., 2010). The
core module handles commonalities, while delta modules (deltas) address variabilities. A
delta can alter existing behavior without directly modifying a source code. It implements
variations by adding, removing, or modifying elements in the codebase. DOP effectively
supports requirements changes and variability management in product line applications.
Two modeling languages that support DOP are DeltaJ (Koscielny et al., 2014) and abstract
behavioral specification (ABS) (Johnsen et al., 2012; Hähnle, 2013).

In our previous work, we have developed tools to support SPLE in Precise Requirement
Change Integrated System (PRICES) project1. PRICES is a framework for developing
web-based software product lines that is supported by the PRICES toolkit. The develop-
ment of the PRICES toolkit has been carried out incrementally between 2016 and 2019,
employing different approaches and techniques. For instance, the model transformation
tools have been developed using Python, while the diagram editor leverages the Eclipse
IDE. In addition, the ABS compiler, Java, and JavaScript environments are required to
execute the generated applications. The utilization of multiple environments and soft-
ware components introduces complexity in product line development using PRICES. To
address this challenge, we propose an integrated development environment (IDE) called
Prices-IDE, which aims to streamline the development process based on MDSPLE.

Prices-IDE is designed on top of Eclipse IDE, which has standards support for model-
driven engineering, such as data models, model transformation, and code generators. Each
PRICES tool is deployed as an Eclipse plugin within Prices-IDE. Furthermore, we plan
to integrate Prices-IDE with FeatureIDE (Kastner et al., 2009), a widely-used tool and
framework for SPLE that is also built on the Eclipse IDE. FeatureIDE offers support
for various implementation approaches, such as feature-oriented programming (FOP)

1https://rse.cs.ui.ac.id/?open=prices/index

Universitas Indonesia

3

with FeatureHouse, DOP with DeltaJ, and AOP with AspectJ (Meinicke et al., 2017).
The integration of Prices-IDE and FeatureIDE expands the capabilities of FeatureIDE by
introducing a new implementation approach for developing web-based software product
lines.

1.2 Research Questions

As a novel approach in software development, the adoption of the MDSPLE approach
requires additional support. During the literature review, existing problems are analyzed to
find how this research will contribute to the existing knowledge base in MDSPLE. In this
research, the scope of the system to be modeled is a web-based application. We consider
problems at the modeling and implementation levels. Therefore, this research attempts to
answer the following research questions:

RQ1 Which artifacts of a web application that can be modeled as a product line?
A web application consists of various artifacts with different characteristics and
granularities. These artifacts should be designed to support web-based product
line development and the scope of modeling and the level of abstraction should be
decided.

RQ2 How to model the problem domain of a web-based product line?
The requirements engineering process analyzes commonality and variability in the
problem domain. A uniform approach is required to model the variability of a
web-based product line in different levels of abstraction and granularities.

RQ3 How to implement the product line based on the model in the problem domain?
The DOP approach is used in the domain implementation. The variability model
in the problem domain can be mapped to the DOP implementation based on the
UML profile. A model transformation mechanism is designed to bridge modeling
language in the problem domain to the DOP language.

RQ4 How to integrate the code generation and product derivation process?
In the product derivation, a variant of a web-based product line can be generated
based on selected features. An integrated development environment is required to
assist the code generation and product derivation.

Universitas Indonesia

4

1.3 Research Objectives

Model-driven engineering for delta-oriented software product lines is proposed to support
web-based product line development. The objectives of this research are:

1. Design an MDSPLE framework to develop software product lines based on DOP

2. Define a unified modeling mechanism for delta-oriented software product lines

3. Design a strategy in the domain implementation to generate running applications

4. Design model transformation tools to bridge the problem and solution domains

5. Design an integrated development environment for tools support in the MDSPLE
framework

1.4 Research Limitations

This research presents a method to develop a software product line using MDSPLE. The
MDSPLE approach covers the SPLE process in the problem and solution domains. The
scopes for this proposed research are limited to:

1. The MDSPLE approach can be applied to any domain. At this moment, the develop-
ment of supporting tools is still focused on generating web applications.

2. The engineering process is focused on design and implementation of SPLE. We do
not consider issue about requirements, testing, nor user experience.

3. The integrated tools are developed in the Eclipse Modeling Tools.

1.5 Research Contributions

After solving all research questions, the contributions of this research are summarized as
follows:

1. Model-driven SPLE (MDSPLE) approach is designed to guide and support the
development of a web-based SPL. The process covers the entire processes of SPLE
that can be applied in any problem domain.

Universitas Indonesia

5

2. The UML-DOP profile extends the UML metamodel to support variability modeling
in SPLE. The UML-DOP profile can be used to design any problem domain with
several levels of abstractions. The UML-DOP profile is the main ingredient to
support traceability in SPLE.

3. Variability modules for Java (VMJ) is designed to support implementation of SPLE
using JAVA programming language. VMJ is a new concept in domain implementation
that can be used in any problem domain. This concept is realized in the web
framework to develop a web-based product line application.

4. Prices-IDE is an integrated development environment to develop a product line
application. Prices-IDE provides tool support with semi-automated model trans-
formation and code generation. Prices-IDE is deployed as an Eclipse plugin and
integrated with FeatureIDE to speed up the adoption of using a new approach.

Universitas Indonesia

CHAPTER 2

THEORETICAL FOUNDATIONS

This chapter describes the theoretical foundations of this research, such as model-driven
software engineering, software product line engineering, and delta-oriented programming.
We also explain the related work about mode-driven software product line engineering to
analyze state of the art.

2.1 Model-driven Software Engineering

Model-driven software engineering (MDSE) is a methodology in software development
that utilizes models as primary artifacts (Brambilla et al., 2012). MDSE is supported with
two main ingredients, model transformation and code generation. Model-to-text (M2T)
transformation takes models as input and produces text (source code) as output. Code
generation is an application of M2T transformation to achieve the transition from the
model level to the code level (Brambilla et al., 2012).

In MDSE, a modeling language is a tool to specify models of software in textual or graphi-
cal representations. Unified Modeling Language (UML) is a standard modeling language
widely used in software development. As a graphical modeling language, the abstract
syntax of UML is defined in the metamodel. UML metamodels contain class, attributes,
and associations that define the modeling concepts and properties. The specification of
UML, including the abstract syntax, concrete syntax, and semantics, are explained by
Object Management Group (OMG) in OMG (2017).

UML has extension mechanisms to customize UML metamodel for specific purposes,
called UML profile. The UML profile provides flexibility for UML so that UML can
be used to model different platforms or domains. UML profile is defined by specifying
stereotypes, constraints, and tagged values. Stereotypes are used to refine meta-classes by
defining additional semantics to the element represented by the meta-class (Brambilla et
al., 2012). A stereotype defines an extension for existing metaclasses in the UML diagram.
A stereotype uses the same notation as a class, with keyword <<stereotype>> before the
name of the class.

As part of MDSE, models can be transformed by using several scenarios, such as merged

6 Universitas Indonesia

7

with other models, refactored into other models, refined to be more detailed, or translated

into other languages. Those scenarios are implemented as model transformation. There are
two kinds of model transformation, model-to-model and model-to-text. Model-to-model
(M2M) transformation is a program which takes models as input to produce models as
output (Brambilla et al., 2012). Model-to-text (M2T) transformation takes models as input
and produces text (source code) as output.

2.2 Software Product Line Engineering

Software product line engineering (SPLE) is an approach in software development that can
deliver various products in the same product line. A product line is a set of products that
share commonalities and variabilities (Pohl et al., 2005). Commonalities, requirements that
are required by all products, are defined as a set of reusable parts. Different requirements
for any product are managed as variabilities. A product can be derived based on the
commonalities and chosen variabilities. Figure 2.1 shows the SPLE framework in (Pohl et
al., 2005) that consists of two main stages, domain engineering and application engineering.
Domain engineering is a process to define the commonality and variability of product lines.
Each step in domain engineering produces artifacts that are utilized in the application
engineering stage.

Figure 2.1: SPLE Framework
Source: Pohl et al. (2005)

As a new approach, the adoption of SPLE in software development is quite challenging.
Several companies already have various products in the same domain, but they have

Universitas Indonesia

8

developed using a traditional approach such as a clone-and-own. To adopt SPLE, a
company prefers to utilize the existing artifacts instead of developing from scratch. The
strategy may differ with another company that wants to try SPLE with a new domain
without any existing product or artifact. Krueger (2002) defined three options to start
software development with SPLE :

• Proactive Approach. The proactive approach provides a mechanism to develop a
product line from scratch. The development processes are planned and conducted
before generating any product.

• Extractive Approach. The extractive approach facilitates a company with various
products and wants to transform the old development approach to SPLE. By using an
extractive approach, a variability model can be identified based on existing products,
and the implementation can be extracted from the existing source code.

• Reactive Approach. The reactive approach is an agile methodology to adopt SPLE.
In this approach, the variability model is not defined entirely at the beginning. A
company starts with an initial product of software product line. The variabilities are
modeled and implemented incrementally when a new product variant is needed.

2.3 Delta-Oriented Programming

Delta-oriented programming (DOP) is a paradigm to implement SPLE by defining a core
module and a set of delta modules (Schaefer et al., 2010). The core module consists of the
implementation of a basic product in the product line. A basic product usually consists of
common features required by all product variants. Delta modules (deltas) add, remove, or
modify elements in the core module to implement a feature’s variant.

A feature model is used to capture commonality and variability in the problem domain,
as defined in feature-oriented programming (FOP) (Apel et al., 2013). A feature is
implemented by one or more delta modules. DOP provides more flexibility than FOP for
implementing product lines, such as the capability to remove an existing source code. A
delta module can add, remove, or modify classes, interfaces, methods, and fields in the
core modules.

The first language that implements the DOP paradigm is DeltaJava (DeltaJ) (Schaefer et al.,
2010; Koscielny et al., 2014). DeltaJ version 1.0 is initially designed to show the feasibility
of the DOP approach (Schaefer et al., 2010) and the latest version is DeltaJ 1.5(Koscielny
et al., 2014). The core module is implemented in Java languages and represents a basic

Universitas Indonesia

9

application in the product line. DeltaJ can modify the Java program by creating delta
modules.

Abstract behavioral specification (ABS) is the second language that implements DOP
(Johnsen et al., 2012; Hähnle, 2013). Unlike DeltaJ, which modifies a Java program, the
delta in ABS modifies the core ABS module. ABS can be generated into programming
languages such as Java, Erlang, and Maude.1 As an executable modeling language, ABS
code generators can perform simulation, execution, or visualization.

ABS supports model variability of product lines based on DOP by using textual feature
modeling to define the commonality and variability. Based on the feature model, a delta
is created to implement the behavior of specific features. A delta can modify existing
functionalities without altering the original source code. The ABS configuration language
defines relations between features and deltas. A product can be generated based on the
feature selection by applying related deltas to the core module.

2.4 Related Work

In this research, the MDSPLE approach is used to develop web applications. The following
sections summarize related works about model-driven SPLE and web-based SPLE. Then,
the state of the art is analyzed by mapping those works to the problem and solution spaces.
Therefore, the current situation is captured, and this research can significantly contribute
to the related research field.

Figure 2.2 shows the existing studies about model-driven SPLE (MDSPLE). Most studies
have focused more on modeling the problem domain. They used different modeling
approaches, such as the common variability language (CVL) (Martinez et al., 2015), the
feature model (Czarnecki et al., 2005), and Ouali et al. (2013) combined UML and feature
model. Support tools are only defined in (Martinez et al., 2015; Ouali et al., 2013), but
those tools are not designed to generate applications. Martinez et al. (2015) developed a
tool for automating extraction process, and the tools in (Ouali et al., 2013) focuses on the
modeling level.

Existing studies that cover the problem and solution domains in MDSPLE are based
on aspect-oriented programming (AOP) (Groher & Völter, 2009; Arboleda & Royer,
2012; Hernández-López et al., 2018). The proposed approach by Groher & Völter (2009)
facilitates variability modeling and implementation in problem and solution spaces. The
solution spaces are divided into models and code parts. The automation process for

1https://abs-models.org/

Universitas Indonesia

10

Figure 2.2: Model-driven SPLE research

generating applications, proposed by Arboleda & Royer (2012); Hernández-López et al.
(2018), used AOP in the solution domain. They have developed a ”configurator” to handle
a feature selection process. Configurator produces the selected feature and a file XML
configuration. As a result, the JAVA application is generated, including the unit test.

MDSPLE is also applied to develop web applications. Model-driven and SPLE improve
variability management and systematic reuse in web engineering. A set of web applications
in the same domain is developed using MDSPLE to produce a web-based software product
line (SPL). A variant of web applications can be generated based on required features.

The state-of-the-art of applying MDSPLE to develop of web-based SPL is shown in
Figure 2.3. Existing frameworks to develop a web-based SPL are proposed using different
variability modeling approaches, such as CVL (Horcas et al., 2018), the feature model and
BPMN (Alferez & Pelechano, 2011b), the decision model (Martinez et al., 2009), and a
combination of the UML and the feature model (Nerome & Numao, 2014; Laguna et al.,
2009). These studies described the modeling process without showing the generated web
applications.

Recent studies by Alferez & Pelechano (2011a); Naily et al. (2018); Aziz et al. (2019);
Horcas et al. (2022) demonstrated the process of generating a running web application.
Alferez & Pelechano (2011a) used the feature model and UML activity diagram in the
problem domain and produced running JAVA web services based on selected features.
Framework by Horcas et al. (2022) uses the feature model and multi-language annotations
to develop web-based SPL. Naily et al. (2018); Aziz et al. (2019) developed a web
framework based on DOP using ABS language to generate a running web application.

A comparison of state-of-the-art approaches in developing a web-based SPL is shown in
Table 2.1. All approaches have variability modeling mechanisms in the problem space as

Universitas Indonesia

11

Figure 2.3: Web-based SPLE research

defined in SPLE, such as the feature model, decision model, and CVL. Our approach uses a
feature model and UML diagram in the problem space. The first novelty is the UML-DOP
profile that extends the UML metamodel based on DOP. The UML-DOP profile is utilized
in the UML diagram to model variability using delta-oriented notation. UML diagram
in Laguna et al. (2009) also uses stereotypes to model variations. However, we define
different stereotypes in this research based on DOP.

Table 2.1: A comparison table of state-of-the-art approaches

Approach Problem Space Solution
Space

Tool Support

Martinez et al.
(2009)

Decision Model N/A PLUM (Eclipse): modeling
and generating a web proto-
type

Laguna et al.
(2009)

Feature Model
and UML

.NET and C# Feature Modeling and Config-
uration Tool

Nerome & Nu-
mao (2014)

Feature Model
and UML

N/A Model Transformation Tool

Alferez &
Pelechano
(2011a)

Feature Model
and UML activity
diagram

Java SALMon, MoRE-WS, and
Swordfish to handle the prod-
uct configuration

Alferez &
Pelechano
(2011b)

Feature Model
and BPMN

N/A BPMN Model Reconfigurator
to generate BPMN from se-
lected features

Universitas Indonesia

12

Vranic &
Taborsky
(2016)

Feature Model .NET and C# Model Transformation Tool

Horcas et al.
(2022)

Feature Model JavaScript Hybrid Engine to delegate the
product generation

Horcas et al.
(2018)

CVL JavaScript SPL Web Engine to generate
web applications

This research Feature Model
and UML

DOP Prices-IDE (model transfor-
mation tool and code genera-
tor)

In the solution space, not all approaches show the implementation process of web-based
product line development. Laguna et al. (2009); Vranic & Taborsky (2016); Alferez &
Pelechano (2011a); Horcas et al. (2018, 2022) explain the implementation process. They
use standard programming languages, e.g., JAVA, HTML, and JavaScript, that are not
designed to implement commonality and variability in SPLE. At the implementation level,
variability is managed in an ad-hoc manner. Therefore, the relationship between variants
of features and their implementation is difficult to define.

In this research, we use DOP to implement a web-based SPL in the solution space. DOP
is designed to implement variability in SPLE. It has good support for feature traceability,
an ability to trace a feature from the problem domain to implementation in the solution
domain (Apel et al., 2013). In DOP, the relationship between features and their implemen-
tation is systematically defined in the configuration knowledge. The second novelty in this
research is providing a new implementation to developing a web-based SPL. We design an
architectural pattern based on DOP using the JAVA module system and design patterns.

As depicted in Table 2.1, most supporting tools are designed to support model transfor-
mations or product configuration. The process of generating a running web application is
only explained by Alferez & Pelechano (2011a); Vranic & Taborsky (2016); Horcas et al.
(2018, 2022). In this research, the supporting tools cover problem space modeling, model
transformation, and code generator. A web framework is also defined based on VMJ,
called WinVMJ. Therefore, the third novelty is providing a framework and supporting
tools to develop a web-based SPL.

Universitas Indonesia

CHAPTER 3

RESEARCH METHODOLOGY

This chapter explains research methodology in this research and the evaluation criteria. We
also explain the stages conducted in this research, such as scope analysis, design variability
model, design domain implementation, Prices-IDE integration, and evaluation.

3.1 Research Methodology

This research uses experimentation to design an integrated framework for a web-based
software product line (SPL). Experiments can be viewed as a prototyping process to design
an appropriate framework for a web-based SPL. As a new approach, the framework causes
process changes in web development. Thus, the framework is completed with tools and an
automation process to ease the adoption path.

A case study is used in the experiments to evaluate the framework and improve the tools.
Wohlin et al. (2012) stated that a case study is suitable for the industrial evaluation of new
methods and tools because it can avoid scale-up problems. Based on the application to the
case study, the framework is evaluated using quality criteria defined by Apel et al. (2013).
The quality criteria are compiled to assess the product-line implementation techniques.
Since this research proposes a new implementation technique for SPLE, the following
quality criteria are used for a qualitative evaluation:

1. Low Preplanning Effort. The engineering process in SPLE allows adding a new
variability at different stages: before, during, or after the development. Proactive,
reactive, and extractive approaches in SPLE have different ways to facilitate the new
features. Preplanning is required in the whole product line development process to
implement a new required feature. Ideally, preplanning in SPLE aims to minimize
the effort to change existing implementation.

2. Feature Traceability. Feature traceability is the ability to trace a feature from the
problem domain to the solution domain (Apel et al., 2013). Tracing features in design
and implementation is essential to manage the variability and reuse mechanism. A
feature can be realized in one more implementation artifacts. A mapping between

13 Universitas Indonesia

14

features and their implementation is defined to manage traceability.

3. Separation of Concerns. In SPLE, separation of concerns deals with the design and
implementation of features and aims to decompose a system into cohesive parts (Apel
et al., 2013). Different features can be implemented in distinct artifacts to distinguish
the concerns. However, sometimes we can not separate all concerns at the same
time. A concern can be scattered across multiple other concerns (code scattering)
or several concerns can have intermingled representation within a module (code

tangling). Therefore, the ability to separate concerns into cohesive implementations
is an important quality criterion of product-line implementation techniques.

4. Information Hiding. The key concept of information hiding is to decompose a
system into modules or components (Apel et al., 2013). Each module is divided into
an internal part, which is hidden from other modules, and an external part (known as
an interface), which describes a contract to other modules. The key challenges are
designing small and clear interfaces to make communication explicit and maximizing
the hidden information.

5. Granularity. A feature implementation can change a program at different levels
of granularity. A level of granularity refers to the hierarchical structure of an
implementation artifact, defined by a containment relation among the structural
elements. A change that involves the addition of a new file to a given program
is coarse-grained, adding a new member to a given class is medium-grained, and
adding a new statement to a given method body is fine-grained (Apel et al., 2013).

6. Uniformity. Based on the principle of uniformity, a general approach should rep-
resent all kinds of artifacts. All artifacts should be treated and managed similarly.
Artifacts include code and non-code artifacts, such as requirements, documentation,
and architecture designs. Some implementation SPLE techniques are designed in
a language-independent manner. Language-independent tools are also designed
to enhance uniformity. Therefore, an implementation technique can be applied to
various artifacts.

3.2 Research Stage

Based on the research questions in Sect. 1.2, this research is conducted in several stages.
The flow of this research is shown in Figure 3.1.

Universitas Indonesia

15

Figure 3.1: Research Flow

1. Scope Analysis
This stage starts with literature study to explore theoretical foundations, related
works, and state-of-the-art. The summaries of the literature study are explained in
Chapter 2. Based on the literature study, the problem formulation is conducted to
analyze the existing problems. The result is research questions, defined in Sect. 1.2.

A new model-driven SPLE (MDSPLE) approach is designed to solve the problem.
The MDSPLE process covers both problem and solution domains. As explained
in Section 4.1, the MDSPLE process is supported with tools to support domain
and application engineering. We apply the MDSPLE approach to develop a web
application that consists of back-end functionality, user interface (front end), and
server configuration. We have to analyze which components of the web applications
can be modeled as product lines.

2. Design Variability Model
At this stage, we design a unified variability model for the MDSPLE approach.
First we use a feature model that captures system variability, as defined in feature
oriented software product lines (Apel et al., 2013). The feature model is represented
in a feature diagram which shows a graphical representation in a tree structure.
Second, a variability model is designed based on the UML diagram. The UML
diagram is completed with the UML-DOP profile to represent variability at the
architectural level. The UML-DOP profile is an extension to model variability in
UML (Setyautami et al., 2016). The UML-DOP profile is refined to support the
re-engineering of microservice-based applications (Setyautami et al., 2020) and

Universitas Indonesia

16

variability modules (VM) concept (Setyautami & Hähnle, 2021).

3. Design Domain Implementation
We use the delta-oriented programming (DOP) approach in the solution space. This
research proposes a new domain implementation approach called Variability Modules
for Java (VMJ). VMJ is designed based JAVA module systems and design patterns to
implement SPLE. The detailed definition of VMJ is explained in Chapter 5. WinVMJ
framework is then designed based on VMJ to support the web back-end development
with VMJ (Prayoga, 2020). For the web front-end, we use an Interaction Flow
Modeling Language (IFML) to model the abstract user interface. The IFML meta
model is also extended based on DOP to model variations in the user interface.

4. Integrated Development Process
At this stage, the development processes and tools are designed into an integrated
development environment, which is explained in Section 6.1. The integration covers
feature modeling, UML modeling, user interface modeling, domain implementation,
and product generation. The problem domain is mapped to the solution domain using
a model-to-model transformation mechanism. As a new domain implementation
is introduced, the model transformation tool must be developed to support the
MDSPLE process. We also demonstrate the practical application using a case study

by performing domain analysis, implementation, and product generation.

5. Evaluation
We evaluate the MDSPLE approach by analyzing the variability model and the appli-
cability of the UML-VM profile as a foundation of this research. We use evaluation
criteria from Apel et al. (2013) that is designed to evaluate SPLE implementation
technique. Some scenarios are used to demonstrate the product line development
and requirements changes. We evaluate the automated code generation and process
improvement in the MDSPLE approach.

Universitas Indonesia

CHAPTER 4

MODEL-DRIVEN SPLE

This chapter explains the proposed model-driven SPLE (MDSPLE) approach that is
defined based on delta-oriented programming (DOP). The UML-DOP profile is used in the
MDSPLE approach to model commonality and variability in the UML diagram. In this
chapter, the definition of UML-DOP profile is explained by mapping the DOP elements
into UML notations. Short practical examples are also explained in the last (two) sections
to show the applicability of the proposed MDSPLE approach.

4.1 MDSPLE Approach

MDSPLE is an application of MDSE to develop a software product line (SPL). This
research proposes a new MDSPLE framework based on DOP that covers problem and
solution domains. The process in SPLE is divided into domain engineering and application

engineering (Pohl et al., 2005). Apel et al. (2013) separate those two processes into
two different perspectives: problem space and solution space. This separation produces
four main tasks in product line development: domain analysis, domain implementation,
requirement analysis, and product derivation.

We adopt the engineering process for SPLE defined by Apel et al. (2013) to design
MDSPLE framework based on DOP. We combine the process in SPLE with model trans-
formation and code generation, two key techniques in MDSE, to connect the problem
and solution spaces. The MDSE techniques can be applied in SPLE to automate product
generation from the variability model and specific artifacts. Therefore, combining MDSE
and SPLE into MDSPLE can enhance the traceability and maintainability of SPLs by
establishing clear relationships between the models and the generated code.

The design of MDSPLE based on DOP is shown in Figure 4.1. In domain analysis, we
use a feature diagram and UML diagrams. These diagrams are transformed into core
and delta modules in domain implementation since we use DOP to implement SPLE. In
application engineering, a feature selection process is performed to generate a product
variant. This stage is called requirements analysis because a new feature can be added
to the domain analysis. In product derivation, a running application is composed based

17 Universitas Indonesia

18

on selected features. The source code is generated from reusable components in domain

implementation.

Figure 4.1: MDSPLE design based on DOP, adopted from Apel et al. (2013)

4.2 MDSPLE Framework for Web Development

The MDSPLE based on DOP explained in Section 4.1 can be used to develop SPLs in any
domain. In this research, we aim to check the applicability of the MDSPLE approach for
web-based product line development. A web application consists of various artifacts with
different characteristics and granularities. These artifacts can include components such as
user interface (UI) elements, database schemas, server configurations, or business logic
modules.

To facilitate the development of web-based product lines, artifacts in web applications
must be designed by considering the commonality and variability. However, modeling
all artifacts as SPLs can indeed introduce complexity in the feature selection process.
When multiple artifacts are treated as product lines, each with its own set of features
and variations, the feature selection becomes more complicated and challenging. It
requires careful consideration and management of the inter-dependencies, constraints, and
interactions among the features across different artifacts.

Based on the complexity consideration, we focus on modeling functional requirements of
web applications as SPLs. The functional requirements define the specific functionalities

Universitas Indonesia

19

and capabilities that the application should exhibit to meet the users’ needs. Web artifacts
related to non functional requirements, such as performance, security, scalability, are not
modeled as SPLs. Regarding the functional requirements, we need to analyze commonality
and variability of the following artifacts:

• Business Logic Modules: web applications can be modularized into different com-
ponents or modules, such as authentication, payment, and content management.
These modules may have common functionality across different applications but also
exhibit variations based on specific requirements. We can model the commonality
and variability of business logic modules in a feature diagram and UML diagrams.
Modeling these modules as an SPL allows for reusing common components and
configuring variations based on the desired functionalities.

• UI Elements: UI elements, such as forms, buttons, and menus, can exhibit com-
monalities and variabilities. For example, different variations of a form may have
different fields, validation rules, or styling options. Modeling these components as
an SPL allows for systematically managing variations in the user interface. How-
ever, variations in UI elements can not be modeled in a feature diagram or UML
diagram. We utilize an Interaction Flow Modeling Language (IFML) diagram to
model variations in UI elements.

• Data Models: The data models (database schemas) used in web applications often
have common entities and relationships but may also exhibit variability based on
specific application requirements. Commonality and variability in data models can
be represented in UML class diagrams. As we used UML-DOP to model variations
in UML diagrams, an adaptive database schema can be generated based on selected
features.

The MDSPLE approach for web-based product line development based on DOP is designed
to model functional requirements as SPLs. It encompasses both the web back end, which
includes business logic modules and data models, and the web front end, which includes
UI elements. To capture commonality and variability in the web back end, a feature
diagram and UML diagrams are utilized in the problem domain. On the other hand, the
web front end is modeled using IFML diagrams in the solution domain. By refining the
MDSPLE based on DOP in Figure 4.1, an MDSPLE framework for web-based product
line development is designed to support web development, as illustrated in Figure 4.2.

The process of web-based product line development adheres to the MDSPLE process
outlined in Sections 4.1, with some differences observed in domain implementation and

Universitas Indonesia

20

Figure 4.2: MDSPLE framework for web development

product derivation. In domain implementation, the development of reusable artifacts is
extended to encompass the UI aspect. An IFML diagram is used to model abstract UIs
that do not have any styling information, such as color, size, and layout. The UI assets
are defined to complement the IFML diagram. In product derivation phase, the generated
running applications are separated into the web back end and front end. The core and delta
modules stubs are reused to generate the web back end, while the IFML diagram and the
UI assets are combined to generate the web front end.

4.3 The UML-DOP Profile

UML has a mechanism to extend the metamodel by defining a UML profile as a standard
modeling language. In this research, a UML profile is defined to model product line
variations. As we use DOP to implement SPLE, the UML profile is defined based on
DOP, called UML-DOP profile. The UML-DOP profile is created by defining UML
stereotypes, constraints, and tagged values based on DOP elements. In this proposed
MDSPLE approach, the UML-DOP profile is the main foundation because a UML diagram
with the UML-DOP profile (UML-DOP diagram) is used in the domain analysis.

Initially, the UML profile is defined based on DOP language, abstract behavioral specifi-
cation (ABS) in Setyautami (2013). The UML-ABS profile was defined specific to ABS
language without considering DOP in general. Then, the UML-ABS profile is revised to
a UML profile for delta-oriented programming (UML-DOP) in Setyautami et al. (2016).

Universitas Indonesia

21

The UML-DOP profile was extended to support multi-product lines (Setyautami et al.,
2018; Setyautami & Hähnle, 2021) and microservice-based product lines (Setyautami et
al., 2020). As a result, table 4.1 shows the mapping of DOP elements to UML stereotypes.

Table 4.1: Mapping of DOP elements to UML stereotypes

DOP Element Name UML Base Class Stereotype Name
Core Module Package <<module>>

Import Dependency <<import>>

Class Parameter Property <<classParam>>

Delta Module Package <<delta>>

Delta Parameter Property <<deltaParam>>

Module Access Dependency <<uses>>

Module Modifier Association <<adds>>

<<removes>>

<<modifies>>

Class <<addedClass>>

<<removedClass>>

<<modifiedClass>>

Interface <<addedInterface>>

<<removedInterface>>

<<modifiedInterface>>

Class Modifier Operation <<adds>>

<<removes>>

<<modifies>>

Property <<adds>>

<<removes>>

Feature Component <<feature>>

Require Dependency <<require>>

Exclude Dependency <<exclude>>

Product Component <<product>>

When Dependency <<when>>

After Dependency <<after>>

Variability Module Package <<vm>>

Service Component <<service>>

Endpoint Component <<endpoint>>

Based on the UML base class (metaclass) from Table 4.1, DOP elements can be modeled
in UML by using several UML diagrams, such as class diagram, package diagram, and

Universitas Indonesia

22

component diagram. For example, metaclasses class, association, operation, and property
are elements of UML class diagram. Thus, the stereotypes that extend those metaclass, such
as <<classParam>>, <<deltaParam>>, <<removes>>, <<modifies>>, and <<adds>>,
can be modeled in UML class diagram. Those stereotypes represent DOP elements that
will exist in UML class diagram.

4.4 The IFML-DOP Extension

In this research, the MDSPLE approach is designed based on DOP to develop a web-
based SPL. As defined in the MDSPLE process in Figure 4.2, Interaction Flow Modeling
Language (IFML) is used to model the abstract user interface (UI). An IFML diagram
supports the UI specification without considering the technological details of their imple-
mentation (Brambilla & Fraternali, 2015). The front end of web applications, such as the
composition (structure) of the view, the content of the view, the interaction (event), the
data flow (input-output), and the actions, can be modeled in the IFML diagram. The IFML
metamodel is defined based on the OMG standards using the OMG Meta Object Facility
(OMG, 2015).

An IFML diagram for feature Income is shown in Figure 4.3. Based on the requirements, a
user can see a list of income on the website and also add new income data. In the IFML
diagram, these requirements are modeled as two different ViewContainers: Income and
New Income. A ViewContainer models a page or structure in the web application. In the
ViewContainer Income, there is a ViewComponent List that shows a list of income data.
The displayed attribute can be modeled in the List using VisualizationAttribute.
The data in VisualizationAttribute can refer to fields in the UML class diagram or
the database. This reference can be represented in the DataBinding component.

An event in IFML, represented as a circle, is an occurrence that affects the state of the UI.
In Figure 4.3, there is an event Create in the ViewContainer Income. The effect of this
event is represented by the arrow InteractionFlow. An InteractionFlow connects the
event to the ViewContainer or ViewComponent affected by the event. In Figure 4.3, if
the event Create is clicked, the event causes the display of ViewContainer NewIncome

which consists of a form AddIncome to add new income data. An event can also trigger an
action, represented by a hexagon. If a user click event Submit, an action Save is triggered
to save the filled data.

Universitas Indonesia

23

Figure 4.3: IFML Diagram: Income

Modeling commonality and variability is an essential process in SPLE. In Section 4.3, the
UML metamodel is extended, by defining the UML-DOP profile, to support variability
modeling in the UML diagram. The UML-DOP profile is designed based on DOP by
mapping the DOP elements to UML stereotypes. The DOP paradigm is not designed to
develop the UI of applications. Thus, the UML diagram with the UML-DOP profile is
only used to model the back end of a web-based SPL. Fadhlillah et al. (2018) proposed
to use IFML to model abstract UI in web-based SPL development. Since the IFML is
not intended to model UI variations, the IFML model is designed without considering
commonality and variability.

Based on the IFML modeling process, some features might have similar UI but existing
IFML model cannot be reused to model different features. For example, features Expense

and Income requires the same IFML elements to model the web UI with different displayed
data. As a result, we have two similar IFML models for Income and Expense. In DOP, the
common parts are defined as core modules, and the variants are defined as delta modules.
If the IFML diagram can be modeled as core and delta modules, the UI variations can be
managed systematically.

IFML is allowed to be extended for a specific purpose. Existing studies by Brambilla et al.
(2014); Hayat et al. (2021); Roubi et al. (2016); Shahin & Zamani (2021) extends IFML to
model various domains. Brambilla et al. (2014) extends IFML to model mobile applications
because IFML does not cover mobile-specific aspects and interactions. Hayat et al. (2021)
extends IFML for modeling Geographical Information System, Shahin & Zamani (2021)
extends IFML for Form Making System, and Roubi et al. (2016) extends IFML for Rich
Internet Graphical UI. In this research, we extend the IFML model based on DOP to

Universitas Indonesia

24

model UI variations. The following subsections explain the IFML-DOP extension based
on ViewContainer, ViewComponent, and ViewComponentPart, as shown in Figure 4.4

Figure 4.4: IFML-DOP Extension

Universitas Indonesia

CHAPTER 5

VARIABILITY MODULES FOR JAVA

This chapter explains about Variability Modules for Java (VMJ), an architectural pattern to
implement multi product lines (MPL) in JAVA.

5.1 Variability Module

Variability modules (VM) is an extension of a software module system that captures
variability at the level of modules (Damiani et al., 2021). VM is designed to solve
interoperability problems in product line variants. Multiple variants from a similar product
line sometimes cannot co-exist together. Furthermore, managing the dependency of
multi variants in different product lines is also challenging. So, VM adopts the module
mechanism to manage variability and dependency.

Each VM represents a product line, and product lines can be considered as modules. A
VM consists of a module header, a core module, and an optional delta module. A module
header contains a module, optional import/export dependencies referring to other module
cores, and optional feature declarations. A core module is a standard module with classes,
interfaces, fields and methods. In addition, it allows to declare products.

Since in VM deltas are uniformly represented as class operations, the DOP aspects are
straightforward: The core module contains deltas and configuration knowledge. The latter
is as usual in DOP. Deltas may contain operations that specify their interfaces and classes
by adding, removing, and modifying such elements. VM concept is realized in the ABS
modeling language that supports SPLE (Damiani et al., 2021). The implementation VM
for ABS is integrated into the ABS compiler tool chain1.

5.2 Architectural Pattern in Java

In this research, we designe an architectural pattern to realize the VM concept in JAVA,
called Variability Modules for Java (VMJ). The VM concept is combined with the JAVA

1https://github.com/abstools/abstools/tree/local productlines

25 Universitas Indonesia

26

module system (available from JAVA 9) and design patterns. The main advantage of VMJ
is an extension of the JAVA module system that supports SPLE and MPL. VMJ is more
intuitive to use for anyone familiar with the JAVA programming language.

As VMJ is designed in the JAVA programming language, the problem is how to manage
and implement variations in JAVA. Figure 5.1 illustrates the problem and solution mapping.
We use the AMANAH case study as an illustration in the problem space. AMANAH
consists of several features, such as Program, FinancialReport, and Donation. A rectangle
denotes a mandatory feature (core module), and an ellipse denotes an optional feature
(delta module). For example, three products are generated, i.e. CharitySchool, Hilfuns,
and YayasanPandhu.

Figure 5.1: Problem Solution Mapping
Source: Setyautami & Hähnle (2021)

In the solution space, VMJ architectural pattern is designed to manage variation in JAVA.
A product line in VMJ is represented as a JAVA project consisting of JAVA modules.
As defined in VM, JAVA modules can be classified into the core, delta, and product
modules. Each kind of module has a module declaration (header) specifying its name and
dependencies. The structure of the VMJ is defined as follows:

• A VM is defined as a JAVA project that consists of several modules.

• A core module is defined as a JAVA module that consists of packages with common
capabilities to be reused anywhere they are declared.

• A delta module is defined as a JAVA module that modifies a core module. A concrete
decorator class is defined in the delta module.

• A product variant is defined as a JAVA module. A product consists of a list of
selected features. So, the product module has a dependency on core modules and

Universitas Indonesia

27

delta modules.

The schema of the VMJ architectural pattern is shown in Figure 5.2. JAVA modules are
managed using design patterns to derive product variants. A delta module decorates a core
module by specifying the modification behavior. A product module configures objects
based on the selected features. By defining java modules dependency, a product module
can access functionality in the selected features. Objects in the core modules and delta
modules are created using the factory pattern. The factory pattern also manages the delta
application order if a feature is implemented by more than one delta.

Figure 5.2: Schema of VMJ Architectural Pattern
Source: Setyautami & Hähnle (2021)

5.2.1 Decorator Pattern

In DOP, variability is implemented in the delta modules. Delta operations can add, remove,
or modify existing classes, methods, or fields in the core modules. These operations are
applied to the core modules without changing the source code directly. Based on the feature
selection, the behavior in the core modules is changed by delta application. Managing
variability in SPLE is not supported by JAVA languages. Inheritance is not suitable to
model delta behavior because sub-classing is made statically. Therefore, in this research
the decorator pattern is used to model delta’s behavior.

The decorator pattern can change an object’s behavior dynamically. The new behavior is
added after creating the original object. Thus, the behavior in the existing object can be
maintained. For example, there are two kinds of Financial Report, Income and Expense.
Income has additional a new field <<paymentMethod>>. Both Income and Expense modify
method total() in the core module. Figure 5.3 shows the application of the decorator
pattern to FinancialReport module.

To obtain variants of FinancialReport, the pattern is set up with interface
FinancialReport and abstract component class FinancialReportComponent. The con-

crete component class FinancialReportImpl implements the core module by extending

Universitas Indonesia

28

Figure 5.3: Applying the decorator pattern

the abstract component class. This concrete component class provides an implementation
for all abstract methods from the abstract class. Variant behavior is handled by the abstract
decorator class FinancialReportDecorator extending FinancialReportComponent.
Concrete decorators are created to implement specific behavior of each delta. For exam-
ple, class FinancialReportImpl in the <<delta>> package income implements feature
Income.

The naming convention is used to model VM as JAVA modules. The module
name consists of three parts: <productline-name>.<feature-name>.<module-name>.
A core module name ends with core. For example, in Listing 5.1 module
aisco.financialreport.core represents a core module of FinancialReport. A module
aisco.financialreport.income in Listing 5.3 represents delta income that modifies
FinancialReport.

package aisco.financialreport.core;

public abstract class FinancialReportComponent implements FinancialReport {

protected String idRecord;

protected String dateStamp;

protected int amount;

...

public abstract int total(List<FinancialReport> records};

}

Listing 5.1: Financial Report: Component Class

Universitas Indonesia

29

Listing 5.1 is a snippet of the JAVA code of abstract class FinancialReportComponent
implementing the FinancialReport interface (not shown). The component class consists
of several fields and abstract method. Listing 5.2 shows class FinancialReportImpl

that extends the component class, and implements the total() method. Class
FinancialReportComponent and FinancialReportImpl form the core module rep-
resenting commonality in FinancialReport.

package aisco.financialreport.core;

public class FinancialReportImpl extends FinancialReportComponent {

public int total(List<FinancialReport> records) {

int sum = 0;

for(int i = 0; i < records.size(); i++) {

int amount = (records.get(i)).getAmount();

sum = sum + amount; }

return sum;

}}

Listing 5.2: Financial Report: Implementing Class

The core module implementation of total() sums up the FinancialReport. Its different
variants print either total income or expense. These features are realized in different delta
modules. For example, feature Income prints the total income with fees. A delta module
DIncome is created with additional fields and modified total(). As shown in Figure 5.3,
this is achieved with a decorator class, see Listing 5.3. Another variant of Financial Report,
with feature Expense, can be implemented as a further decorator class in analogous manner.
Delta application is performed by creating a class instance with the Factory design pattern
in Gamma et al. (1994).

1 package aisco.financialreport.income;

2 public class FinancialReportImpl extends FinancialReportDecorator { // decorator class
3 private String paymentMethod; // delta adds fields
4 public FinancialReportImpl(FinancialReportComponent record, String paymentMethod) {

5 super(record);

6 this.paymentMethod = paymentMethod; }

7

8 public int total(List<FinancialReport> incomes) { // delta modifies method
9 int sum = record.total(incomes); // original() call

10 int fee = (int) adminfee(incomes);

11 System.out.println("Income: "+sum+"\n Fee: "+fee);

12 return (sum-fee);

13 }}

Listing 5.3: Delta Income

Universitas Indonesia

30

5.2.2 Factory Pattern

Based on Figure 5.3, core module FinancialReport is modified by deltas DIncome

and DExpense, which modify method total() in different ways. This condition raises
ambiguity in standard DOP, because we cannot specify which modification should be
applied. As a result, a product that consists of features Income and Expense raises a run
time error. VM concepts provide a mechanism that both variants can co-exist without
resulting in ambiguous calls to method total().

In VMJ, the factory pattern is used to choose the appropriate variant during product
generation. The pattern allows creating groups of related objects without specifying
their concrete class Gamma et al. (1994). For example, in the aisco.financialreport
package, a class FinancialReportFactory is created. This class is responsible to create
objects from FinancialReportImpl in different packages: core, income, and expense.
Therefore, the factory pattern encapsulates which FinancialReport’s variant to create and
let the user choose during the product generation.

1 package aisco.financialreport;

2 public class FinancialReportFactory {

3 ...

4 public static FinancialReport createFinancialReport(String fullyQualifiedName, Object... base) {

5 FinancialReport record = null;

6 ...

7 Class<?> clz = Class.forName(fullyQualifiedName);

8 Constructor<?> con=clz.getDeclaredConstructors()[0];

9 record = (FinancialReport)con.newInstance(base);

10 return record;

11 }}

Listing 5.4: Factory class FinancialReport

Listing 5.4 shows The factory class FinancialReport. In line 4, a creator method
createFinancialReport() is declared with two parameters. The first parameter is the
fully qualified name that specifies which class FinancialReportImpl is created. The
second parameter is a variable length argument Object... base that can be filled by
zero or more fields. Since delta can add or remove fields, a variable length argument

allows flexibility of the number of field. In lines 7–9, JAVA’s reflection API is used to
determine the appropriate constructor method based on the fully qualified name.

Universitas Indonesia

31

5.3 UML-VM Profile

In Setyautami et al. (2016), a UML profile is defined based on DOP, called the UML-DOP
profile. It realizes a one-to-one mapping between DOP elements to the UML model.
The advantage is that a deterministic transformation from UML model elements to DOP
languages (and vice versa) can be achieved (Muhammad & Setyautami, 2016; Setyautami
et al., 2019). The UML-DOP is extended to the UML-VM profile for modeling VM, which
supports MPL and interoperability in the product line. The UML-VM profile is defined by
modeling VM elements from the metamodel using UML notation.

The UML profile can be represented as UML profile diagram. The profile diagram for
UML-VM profile is shown in Figure 5.4. The profile diagram shows all stereotypes and
their extending metaclasses. For example, VM, core module, delta, are represented as a
UML package with different stereotypes <<vm>>,<<module>>, and <<delta>>. Specific
attributes in the stereotypes can be defined in tagged values, see three tagged values in
stereotypes <<feature>>.

Figure 5.4: UML-VM profile diagram

Universitas Indonesia

CHAPTER 6

PRICES-IDE

In this chapter, we explain Prices-IDE, an integrated development environment (IDE) to
develop a web-based software product line (SPL). This chapter also provides a realization
and practical application of the MDSPLE approach. We describe the design of Prices-IDE
in the first section. The following sections explain supporting tools in Prices-IDE that are
deployed as Eclipse plugins. In the last section, we show a practical application of the
MDSPLE process with Prices-IDE using a case study.

6.1 Prices-IDE Design

PRICES is a framework to develop a web application using software product line engineer-
ing (SPLE) (Setyautami et al., 2021). This framework is supported by several tools, such
as model transformation tools, back end generator, and user interface generator. The ABS
language is used to model the back end based on DOP. In this research, we change the
ABS language to variability modules for Java (VMJ). The first reason is that VMJ solves
interoperability problems in the SPL that exist in the ABS web framework. Second, VMJ
supports multi-product line (MPL) development. Third, VMJ utilizes standard JAVA mod-
ules system and design patterns so that the developers do not need to learn new languages
to develop a web-based SPL. As VMJ is designed based on VM and DOP, we can use the
UML-VM profile in the UML diagram.

The MDSPLE process with VMJ is shown in Fig. 6.1. The process is started with the
modeling phase with the diagram editor. A UML-VM diagram is used to model the domain
design, a feature diagram is used to model the domain requirements (feature variations),
and an IFML diagram is used to model the abstract UI. Those diagrams are transformed
into the domain implementation using model transformation tools. As a result, the source
codes of the product line back end and front end are generated. A running web application
is derived from the user’s feature selection.

Based on the MDSPLE process in Fig. 6.1, we redesign PRICES tools into an integrated
development environment (IDE), called Prices-IDE. We choose Eclipse, an open-source
platform, to develop interoperable PRICES tools for developers. We utilize Eclipse

32 Universitas Indonesia

33

Figure 6.1: MDSPLE Process - VMJ

Modeling Framework (EMF) that provides modeling and code generation facility for
building model-based applications.

In Eclipse, PRICES tools are deployed as Eclipse plugins and these plugins can be installed
without dealing with infrastructure or integration issues. The structure of Prices-IDE
framework is shown in Figure 6.2. This framework is designed based on the foundation
in the yellow boxes. The foundation is a new conceptual contribution in this research,
such as UML-VM profile that allows modeling variability modules (VM) in UML. The
contributions are applied to practical implementation in Prices-IDE plugins and web
framework. Dotted arrows show the dependencies from practical implementations to
theoretical foundations. For example, the UML to WinVMJ tool is designed and developed
based on UML-VM profile.

Prices-IDE plugins are developed in Eclipse Modeling tools, version 2020-121. These
plugins are deployed in the following update sites:

1. WinVMJ Composer: https://amanah.cs.ui.ac.id/priceside/

winvmj-composer/updatesite/

2. UML to WinVMJ Tool: https://amanah.cs.ui.ac.id/priceside/uml-to

-winvmj/updatesite/

3. IFML UI Generator: https://amanah.cs.ui.ac.id/priceside/ifml-ui

-generator/updatesite/

1https://www.eclipse.org/downloads/packages/release/2020-12/r/eclipse-modeling
-tools

Universitas Indonesia

https://amanah.cs.ui.ac.id/priceside/winvmj-composer/updatesite/
https://amanah.cs.ui.ac.id/priceside/winvmj-composer/updatesite/
https://amanah.cs.ui.ac.id/priceside/uml-to-winvmj/updatesite/
https://amanah.cs.ui.ac.id/priceside/uml-to-winvmj/updatesite/
https://amanah.cs.ui.ac.id/priceside/ifml-ui-generator/updatesite/
https://amanah.cs.ui.ac.id/priceside/ifml-ui-generator/updatesite/
https://www.eclipse.org/downloads/packages/release/2020-12/r/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/2020-12/r/eclipse-modeling-tools

34

Figure 6.2: Prices-IDE Plugins

4. IFML-DOP Editor: https://amanah.cs.ui.ac.id/priceside/ifml-dop

-editor/updatesite/

6.2 UML to WinVMJ Tool

The UML diagram with UML-VM profile (UML-VM) diagram is used in the domain
analysis to model the web-based product line back end. The UML diagram is designed
with Eclipse Papyrus2 modeling environment. Eclipse Papyrus is an integrated tool to
model the UML diagram as defined in the OMG specification. The UML diagram in
Papyrus has an XMI representation and a graphical notation. We can refer to a specific
version of UML metamodel in Eclipse to design a UML diagram. Eclipse Papyrus also
provides support to extend the UML diagram by defining the UML profile. We design
the UML-VM profile in the Eclipse Papyrus and then apply the profile to the UML-VM
diagram.

The UML to WinVMJ tool is developed to transform the UML-VM diagram into WinVMJ
source code. WinVMJ is a web framework based on DOP VMJ and VMJ architectural
pattern. As defined in VMJ, WinVMJ uses JAVA module systems and design patterns.
Support libraries are also developed using JAVA modules to produce a running web-backend
application. The architecture of the WinVMJ framework is separated into three layers to
distinguish the development concerns (Prayoga, 2020; Waluyo, 2022).

2https://www.eclipse.org/papyrus/

Universitas Indonesia

https://amanah.cs.ui.ac.id/priceside/ifml-dop-editor/updatesite/
https://amanah.cs.ui.ac.id/priceside/ifml-dop-editor/updatesite/

35

The transformation rules for the UML to WinVMJ tool are defined based on the UML-VM
profile. The UML-VM profile maps VM elements to the UML stereotypes so that the
stereotypes are key information in the transformation process. The transformation rules are
summarized in Table 6.1. Each product line is modeled as a UML package with stereotype
<<vm>>. This UML package is transformed into a JAVA project, as defined in Rule R1.

As defined in the VMJ, there are three kinds of JAVA modules in WinVMJ: core modules,
delta modules, and product modules. In UML these modules are represented as UML
packages with different stereotypes, whereas in JAVA these modules are implemented as
JAVA modules. In the UML to WinVMJ tool, we only generate implementation of core
and delta modules because the product module is generated by WinVMJ Composer tool.
In Table 6.1, we separate the rules for core and delta modules.

Table 6.1: Transformation Rules

Rule UML Base
Class

Stereotype Name VMJ Source Code

R1 Package <<vm>> Java Project

Core Module
R2 Package <<module>> Java (core) module
R3 Interface − Java interface
R4 Class − Abstract component class

Abstract decorator class
Concrete component class
Factory class

Delta Module
R5 Package <<delta>> Java (delta) module
R6 Interface <<addedInterface>> Java interface

<<modifiedInterface>> Java interface
R7 Class <<addedClass>> Concrete decorator class

<<modifiedClass>> Concrete decorator class
R8 Attribute <<adds>> Field in concrete decorator

class
R9 Operation <<adds>>

<<modifies>>

Method in concrete decora-
tor class

We illustrate the idea of transformation rules by using a UML diagram in Figure 6.3. The
input of the transformation tool is the UML-VM diagram in Figure 6.3a, and the output
is VMJ source code which is illustrated in the UML diagram decorator in Figure 6.3b.

Universitas Indonesia

36

As shown in Table 6.1, the transformation rules are categorized into a core module (Rule
R2-R4) and a delta module (Rule R5-R9). A UML package with stereotype <<module>>
is transformed into a JAVA core module (Rule R2) and a UML package with stereotype
<<delta>> is transformed into a JAVA delta module (Rule R5).

(a) UML-VM diagram (b) UML diagram decorator

Figure 6.3: UML transformation

The UML to WinVMJ tool is implemented in Eclipse using Acceleo Model to Text
Transformator (M2T)3. Acceleo is a template-based approach to develop custom code
generators. Acceleo transforms input models and code templates into generated source
code. The Acceleo language, namely Model to Text Language (MTL), conforms to the
OMG’s Meta-Object Facility (MOF), a standard for model-driven engineering. It uses any
EMF based models such as UML, SysML, or domain-specific models. An Acceleo MTL
module (.mtl file) consists of two main structures: templates and queries. The templates
are used as code skeletons to generate code, and the queries extract information from the
input models.

The input of UML to the WinVMJ tool is a UML-VM diagram, and the output is Win-
VMJ source code. Figure 6.4 shows the package diagram of the UML to WinVMJ tool
implemented in Eclipse Acceleo. To improve the reusability, we create util and services
packages for common functions. When the UML to WinVMJ tool runs, the plugin calls
the main package. The main package transforms the UML model by calling the code
generators in the other packages. As shown in Figure 6.4, the main package depends on
the following packages:

1. Package modulegenerator
3https://www.eclipse.org/acceleo/

Universitas Indonesia

37

Figure 6.4: Package diagram - UML to WinVMJ tool

Package modulegenerator handles a transformation for UML packages in the
UML-VM diagram. As defined in the transformation rules, a UML package with
stereotype <<module>> is transformed into a core module, and a UML package with
stereotype <<delta>> is transformed into a delta module.

2. Package interfacegenerator
The transformation of UML interfaces in the UML-VM diagram is managed in pack-
age interfacegenerator. Interfaces in the UML-VM diagram are transformed to
JAVA interface.

3. Package classgenerator
Package classgenerator manages the transformation of UML classes in the core
module. As illustrated in Figure 6.3, a class in the core module is transformed into
abstract component class, abstract decorator class, and concrete component class in
the model layer. The resource layer is also generated to implement CRUD methods.

4. Package deltaclassgenerator
The transformation rules for classes in delta modules are defined in package
deltaclassgenerator. If the UML class has stereotype <<modifiedClass>>,
the module calls functions to generate a modified class in the model and resource
layers. As defined in Rule R7 in Table 6.1, a UML class with stereotype is trans-
formed into a concrete decorator class. The concrete decorator class extends the
abstract decorator class in the core module.

Universitas Indonesia

38

6.3 FeatureIDE WinVMJ Composer

FeatureIDE is an integrated framework to support feature-oriented development of software
product lines (Meinicke et al., 2017). FeatureIDE is designed based on Eclipse IDE as an
eclipse plugin. The following SPLE processes can be conducted in FeatureIDE:

• Domain analysis: A feature diagram is modeled using Feature Modeling Tool
(FMT) which has graphical and textual notation. In Prices-IDE, we use the latest
format of feature model in FeatureIDE, namely Universal Variability Language
(UVL) (Sundermann et al., 2021).

• Requirements analysis: We can perform a feature selection to define the product line
configuration. FeatureIDE provides support to validate the configuration based on
the feature model.

• Domain Implementation: FeatureIDE has several implementation approaches based
on FOP, DOP, and AOP. We develop a new composer in FeatureIDE to support
domain implementation using the WinVMJ framework.

• Product Generation: a product can be generated based on feature selection. Fea-
tureIDE composer manages the product generation, as defined in the domain imple-
mentation.

Prices-IDE utilizes feature modeling and configuration tools in FeatureIDE by extending
the domain implementation support. FeatureIDE has several composers that manage
the product generation process, such as AHEAD, Munge, AspectJ, FeatureHouse, and
FeatureC++. When we create a new FeatureIDE project, we can choose the composer based
on the domain implementation preference. Febrian (2022) developed a new composer
in FeatureIDE called WinVMJ composer. The WinVMJ composer supports web-based
product line development based on DOP.

The development of the WinVMJ composer in FeatureIDE provides the possibility to
enhance the WinVMJ framework with feature selection and product generation. The
WinVMJ framework, which was developed by Prayoga (2020); Samuel (2022); Waluyo
(2022), did not integrate directly with a feature model. The relation between features and
implementation in WinVMJ is defined in the JAVA properties file, and the selected feature
is defined in the module declaration. These definitions could not refer to constraints in the
feature model, so product validation is a challenging process in WinVMJ. The product
generation is managed by a build script that composes required JAVA modules based

Universitas Indonesia

39

on module declaration. In the WinVMJ composer, the product generation is performed
based on feature selection in FeatureIDE. This process produces a valid product module
automatically and the product can be compiled and run using the WinVMJ composer.

6.4 IFML to UI Generator

As mentioned in Section 6.1, interaction flow modeling language (IFML) is used in the
domain implementation to model the abstract UI. IFML to UI Generator is a plugin in
FeatureIDE that generates the front end of web applications. Initially, the UI generator
plugin was developed by Rohma (2022) and then enhanced by Wilmarani (2023); Santoso
(2023). The UI generator flow is shown in Figure 6.5. The IFML to UI generator is
implemented using the Eclipse Acceleo model to text transformation. Acceleo modules
(.mtl files) consist of transformation rules and templates. In the IFML UI generator,
Wilmarani (2023) develops ReactJS template with various styles and Santoso (2023)
provides a library for static page management.

Figure 6.5: IFML to UI Generator Flow

The input of the IFML UI generator is an IFML diagram and a list of selected features.
By executing the IFML UI Generator, a JavaScript (ReactJS) application for a specific
product is generated. We have evaluated the IFML UI generator developed by Rohma
(2022); Wilmarani (2023); Santoso (2023). We found duplication in the IFML diagram
because the IFML diagram is not designed to model software product lines. For example,
features Income and Expense have a similar business process. Income is modeled in
a ViewContainer Income, as shown in Figure 4.3. Expense is modeled in a different
ViewContainer Expense with the same IFML elements (as defined in Income).The
IFML model could not be reused even though these features require the same UI flow and
elements.

One of the contributions of this research is designing an extension of IFML to support

Universitas Indonesia

40

variation modeling based on DOP, as explained in Section 4.4. The IFML UI generator,
developed by Wilmarani (2023) and Santoso (2023), is not design for IFML-DOP model.
Alisha (2023) extends the capability of the IFML UI generator to support IFML-DOP
notations.The Acceleo modules are adjusted to recognize new elements in the IFML-
DOP, such as DeltaViewContainer, ModifiedList, and AddedVisualizationAttribute. The
transformation rules for those new elements in IFML-DOP are modified in Acceleo
modules and templates. However, the ReactJS (JavaScript) template can be reused without
modifications because the resulting (generated) front end remains the same.

6.5 Running Example: Charity Organization System

The proposed MDSPLE approach has been realized in Prices-IDE tools and plugins, as
explained in Sections 6.1-6.4. In this part, we illustrate the practical application of Prices-
IDE using a running example, an adaptive information system for charity organizations
(AMANAH). Charity organizations have a typical business process: gather donations,
develop programs, and distribute aid to society.

6.5.1 Domain Analysis

In the domain analysis, we use a feature diagram and UML diagrams to model the variabil-
ity. Before modeling process, we analyze the requirements from charity organizations. We
use an extractive approach in SPLE by exploring several charity organization websites to
understand the requirements. We access features in the website to analyze the common-
alities and variabilities of charity organization websites. The result is documented in the
application-requirements (AR) matrix, that maps requirements to a list of applications. AR
matrix is a simple way to perform commonality and variability analysis (Pohl et al., 2005)
The domain analysis for charity organizations websites is conducted in three steps:

1. Analysis with the AR Matrix. The analysis process for charity organization
websites with the AR Matrix is shown in Figure 6.6. The first stage is preparing the
template of AR matrix, the column is for the name of charity organization and the
row is for the features. Next, we select several charity organization websites with
different scopes, sizes, and activities to analyze the commonality and variability.
The chosen organizations are summarized in Table 6.2.

Universitas Indonesia

41

Figure 6.6: Analysis Process with AR Matrix

Table 6.2: Charity Organization Websites

Num Organization Description

1. Human Initiative
(HI)

HI is a charity organization that focuses on humanitarian
programs. The programs are categorized into some aspects:
education, health, economy, and disasters relief.

2. Mizan Amanah
(MA)

MA is an organization that supports orphans with charity
programs, such as shopping with orphans and Eid donations
for orphans. MA also gathers donation for zakat and qurban.

3. Baitul Qu’ran
(BQ)

BQ provides a free school for underprivileged children. BQ
open donations for foster parents, zakat, infaq, shadaqah,

fidyah and qurban.

4. Aksi Cepat Tang-
gap (ACT)

ACT is a charity organization that works on humanitarian
relief, post-disaster recovery, community empowerment, and
also spiritual programs such as qurban and zakat.

5. Titian Foundation
(TF)

TF is a small organization that helps society to get edu-
cation and training. TF provides funding for high school
students, training for teachers, and microfinance for small
entrepreneurs.

6. LAZ Al-Azhar
(LA)

LA is a philanthropic organization of Al-Azhar mosque in
Jakarta. LA gathers donation to help disaster relief, infras-
tructure projects, and community empowerment. LA also
receives donation for zakat, infaq, and shadaqoh.

We put the charity organization’s name in the header column of the matrix. In the
third stage, we access the feature in the website to understand the requirements.
Each feature is placed on a single row in the AR matrix. If the feature does not

Universitas Indonesia

https://human-initiative.org/
https://human-initiative.org/
http://mizanamanah.or.id/
http://mizanamanah.or.id/
http://baitulquran.or.id/
http://baitulquran.or.id/
http://act.id/
http://act.id/
https://id.titianfoundation.org/
https://id.titianfoundation.org/
https://lazalazhar.org/
https://lazalazhar.org/

42

exist, we add the feature to the AR matrix. Table 6.3 shows the AR matrix of charity
organization websites. If the feature already exists in the AR matrix, we mark the
mapping between features and websites. We try all the features from each website
and then repeat the steps for all websites.

Table 6.3: Application-Requirements (AR) Matrix - Charity Organization Websites

Features HI MA BQ ACT TF LA
About Us ✓ ✓ ✓ ✓ ✓ ✓

Bank Account ✓ ✓ ✓ ✓

Chat-bot ✓ ✓

Contact Us ✓ ✓ ✓ ✓ ✓

Online Donation ✓ ✓ ✓ ✓ ✓

Donation Confirmation ✓ ✓ ✓

Donation Guide ✓

E-Magazine ✓ ✓

FAQ ✓ ✓ ✓

Gallery ✓ ✓

Home ✓ ✓ ✓ ✓ ✓ ✓

Language ✓ ✓ ✓

Link Social Media ✓ ✓ ✓ ✓ ✓ ✓

Login/Register ✓ ✓ ✓

News ✓ ✓ ✓ ✓ ✓ ✓

Partner ✓ ✓ ✓ ✓ ✓

Program ✓ ✓ ✓ ✓ ✓ ✓

Public Report ✓ ✓ ✓ ✓

Search ✓ ✓ ✓ ✓

Services ✓ ✓

Term and Condition ✓ ✓ ✓ ✓

Testimonial ✓

Video ✓

Volunteer ✓ ✓

Zakat Calculator ✓ ✓

2. Feature Modeling. The second step in domain analysis is feature modeling. In our
research, the feature model is represented in a feature diagram. Before modeling the
feature diagram, we perform the following tasks:

• Commonality Analysis: requirements that are identical for all websites are

Universitas Indonesia

43

good candidates for mandatory features in the feature diagram. Common
features also can be chosen from basic requirements that every website for
the domain must fulfill. Furthermore, organizational standards or national law
could also enforce the chosen mandatory features.

• Variability Analysis: requirements that differ from each other are considered
as variants of a feature. The difference can be viewed in terms of functionality,
behavior, or user interface.

Based on the AR matrix, features About us, Home, News, Program, and Link social

media exist in all websites. These features can be considered as mandatory features.
The other features only exist in several organizations. For example, feature Public

Report is only available for HI, MA, ACT, LA websites. This feature is thus optional
for charity organization websites.

A feature diagram is a tree whose nodes represent features with unique names. The
parent feature denotes a more general functionality. Variations can be defined as
child features, as the child features represent a specialization. If a feature X1 is
a child of feature X, X1 can be selected if feature X is also selected. Based on
the parent-child perspective, we group features of charity organization websites
by considering their functionalities. We also analyze commonality and variability
for each group to design constraints in a feature diagram. A snippet of the feature
diagram of AMANAH (charity organization product line) is shown in Figure 6.7.
There are three mandatory features, Activity, Financial Report and OrganizationInfo;
and an optional feature Donation.

Figure 6.7: AMANAH Feature Diagram

3. UML Modeling. The third step in domain analysis is UML modeling. We use
a UML-VM diagram to model the structural and architectural design in domain
design. We have designed and implemented some features in AMANAH, such as
Program, FinancialReport, Donation, and OrganizationInfo. Figure 6.8 shows a
snippet of UML-VM diagram representing VM for the AMANAH product line.

Universitas Indonesia

44

Inside the package, stereotyped <<vm>> are the core module for FinancialReport,
delta modules, and features they implement. The core module is modeled as a UML
package stereotyped <<module>>. It consists of the interface FinancialReport

and class FinancialReportImpl.

Figure 6.8: UML-VM diagram of FinancialReport module

The UML package DIncome with stereotype <<delta>> represents a delta module.
This delta module modifies the core module FinancialReport, denoted by UML
dependency with sterotype <<uses>>. A delta module may consists of several modi-
fication. Delta DIncome modifies class FinancialReportImpl in the core module
by adding field paymentMethod and modifying method total(). The application of
the delta operation is represented as a class FinancialReportImpl with stereotype
<<modifiedClass>>. It contains the new field and modified method.

Another variant of feature FinancialReport is Expense. It is realized by delta
DExpense, represented as the UML package with stereotype <<delta>>. Delta
DExpense modifies class FinancialReportImpl by modifying method total().
This delta does not add new attributes or methods to the existing class. Deltas
DExpense and DIncome modify the same class in the core module. Therefore, the
application of these two deltas simultaneously must be managed in the domain
implementation.

Universitas Indonesia

45

A delta module realizes feature’s implementation. A feature is represented as a
UML component with stereotype <<feature>>. The configuration knowledge that
describes a delta application condition is modeled as a UML dependency stereotyped
<<when>> or <<after>>. In Figure 6.8, there is a UML dependency <<when>>

from delta DIncome to feature Income and from delta DExpense to feature Expense.
It means that delta DIncome is applied when feature Income is selected and delta
DExpense is applied when feature Expense is selected.

6.5.2 Domain Implementation

We use DOP approach with VMJ in the domain implementation. Since the case study is a
web application, the WinVMJ framework is used in the web back-end development and
the IFML diagram is used to model the abstract UI of the web front end. The skeleton of
the WinVMJ source is generated from the UML-VM diagram and IFML diagram is used
to generate JavaScript application during the product generation. We divide the domain
implementation into four steps:

1. Generate the Back End Implementation. The output from domain analysis, i.e.,

UML-VM diagrams, are transformed into WinVMJ source code. As defined in
Section 6.2, the UML to WinVMJ tool is used to automate the transformation
process. The structure of generated source code follows the decorator and fac-
tory pattern in VMJ modules. An example of generated WinVMJ modules for the
UML-VM diagram (Figure 6.8) is shown in Figure 6.9. The format name for a
core module is [productlinename].[modulename].core and for a delta mod-
ule is [productlinename].[coremodulename].[deltamodulename]. For each
module, there is a directory for model and resource layers.

2. Code Implementation. The UML to WinVMJ tool produces complete modules,
packages, and classes of the WinVMJ project. However, the generated methods in
the JAVA class do not have complete implementation. The UML-VM diagram only
models the structural behavior, so the methods are transformed into a code skeleton.
The standard methods for database operations, such as create, read, update, and
delete, are completely generated by UML to WinVMJ tool.

As defined in the transformation rules in Table 6.1, a UML class in the core module
is transformed into three classes in the WinVMJ model layer and three classes in
WinVMJ resource layer. Four of these six classes are abstract classes, and the other
two classes are concrete classes. The four abstract classes are fully generated by
UML to WinVMJ tool because all methods in abstract classes can be defined as

Universitas Indonesia

46

Figure 6.9: Generated WinVMJ modules for FinancialReport variants

abstract methods. The developer only needs to complete a method’s implementation
for two concrete classes in each module.

3. Integration with Feature Model. Integration of the generated WinVMJ source code
with feature model is conducted in the FeatureIDE project using WinVMJ composer,
developed by Febrian (2022). We create a FeatureIDE project and choose WinVMJ

in the composer selection. As a result, the FeatureIDE project has a structure that
follows the WinVMJ framework. The generated source code is placed in directory
modules, directory external is used to store external library and directory src is
used to store the required modules for a product based on the feature selection. The
feature selection it self is defined in directory configs.

We use a feature model in UVL notation, that has visual and textual represen-
tations. The feature model is defined in file model.uvl and the source code
of all JAVA modules is stored in directory modules. A feature is implemented
by one or more delta modules (deltas) in DOP. The mapping between features
in the feature module and deltas is defined in file feature to module.json, as
shown in Listing 6.1. For example, feature Income is implemented by delta module
aisco.financialreport.income.

{

"Income": ["aisco.financialreport.income"],

"Expense": ["aisco.financialreport.expense"],

}

Listing 6.1: Mapping Feature to Module

Universitas Indonesia

47

4. UI Modeling. An activity in the domain implementation for front-end development
is modeling abstract UIs using IFML diagrams. An IFML diagram can be used to
model the content, user interaction, and control behavior of the applications. IFML
elements supports platform independent model because they only model the abstract
UI without detail information about style, size, layout, or color. As explained in
Section 4.4, we extend IFML elements with DOP notation to model commonality
and variability in the abstract UI.

Figure 6.10: IFML-DOP diagram - FinancialReport

A feature in the feature diagram may have one or more web pages. A web page
is modeled as a ViewContainer in the IFML diagram. An example of IFML-DOP
diagram for feature FinancialReport in charity organization system is shown in
Figure 6.10. A ViewContainer FinancialReport consists of List FinancialList to
display the data. In DataBinding, IFML elements may have references to the domain
model in the back end. For example, to display data from the database, DataBinding

ReportData refers to the back-end API. We set an API address in a property of
DataBinding called Uniform Resource Identifier. We can choose specific attributes to
be displayed by defining VizualitionAttribute.

In the IFML-DOP diagram, existing ViewContainer can be modified by ViewCon-

tainerDelta. In Figure 6.10, ViewContainerDelta Income modifies ViewContainer

FinancialReport by modifying List with a new DataBinding Income. A new Visu-

Universitas Indonesia

48

alizationAttribute is also added to display a field that does not available in existing
elements. ViewContainerDelta Income also has a different NavigationFlow from View-

Container FinancialReport. The NavigationFlow connects to ViewContainerDelta

NewIncome. It is triggered by Event AddIncome. ViewContainer FinancialReport is
also modified by ViewContainerDelta Expense. This delta does not add a new IFML
element but it modifies the DataBinding.

6.5.3 Product Generation

The application engineering in Figure 4.2 starts with feature selection. In Prices-IDE,
the feature selection process is conducted in FeatureIDE by defining a configuration.
FeatureIDE provides a configuration editor to select features, as shown in Figure 6.11.
The left box is an initial configuration before any feature is selected. The mandatory
features, such as Activity and Income, are automatically selected in the initial configuration.
The right box in Figure 6.11 is a configuration for product BisaKita. Product BisaKita
consists of features Active, Income, Expense, ArusKasReport and Confirmation.

Figure 6.11: Feature selection - BisaKita product

The product generation consists of two main processes:

1. Generate Web Back End
A product line may have several product variants and a configuration file is defined
for each product. All these configuration files are stored in directory configs in
FeatureIDE project. The product generation for a web back-end in the FeatureIDE
WinVMJ composer is conducted in the following steps:

(a) Set configuration. We must choose a config file as a current configuration to
generate a product based on selected features. Right-click on a selected config

Universitas Indonesia

49

and choose FeatureIDE → Set As Current Configuration. When the ac-
tive configuration file is modified and saved, the required JAVA modules from
directory module are copied to directory src. The product module is also gen-
erated at this stage. It consists of a module declaration (module-info.java),
a package, and a JAVA product class.

(b) Compile product. Based on the chosen configuration, required modules are
generated in directory src. The next step is compiling the generated modules
into a running application. Select directory src, right-click, and choose Fea-
tureIDE → WinVMJ → Compile. The results are Jar files based on selected
features and required WinVMJ libraries.

(c) Run back end. A script to run the generated product (back-end), namely
run.bat, is generated from the previous step (compile product). The script
contains commands to create tables, insert required data, and run the Java
source code. It can be executed from terminal or Eclipse (external tools

configuration).

2. Generate Web Front End
The front end of web applications is generated from the IFML diagrams. We have to
ensure that the selected features in the front end are the same as the selected features
in the back end. We use a configuration file in the FeatureIDE project as input for
the IFML UI generator. The IFML-UI generator consists of transformation rules
and ReactJS (JavaScript) templates. The following steps are performed to generate a
web front end:

(a) Prepare the UI boilerplate. The UI boilerplate is available in the UI generator
to provide common assets of generated front end. First, create a general project
in Eclipse and then copy the templates to the project. Second, right-click on the
Eclipse (empty) project and choose IFML UI Generator→ Copy Template

Here.

(b) Generate or define selected features. We reuse the configuration in FeatureIDE
as an input in the UI generator to ensure consistency in feature selection. First,
choose Generate Selected Features in FeatureIDE WinVMJ composer.
Then, right click on the configs file, choose FeatureIDE → WinVMJ →
Generate Selected Features. Choose the ReactJS project, defined in step (a), as
a target project. A list of selected features is generated in plain text format.

(c) Generate the front end. The last step is generating the front end (JavaScript)
from the IFML diagrams. Right-click on the IFML diagram (file .core),

Universitas Indonesia

50

choose IFML UI Generator → Generate UI. Choose the ReactJS project,
defined in step (a), as a target project.

(d) Run the product. The web front (ReactJS) is fully generated from the UI gen-
erator. Install the required dependencies by running npm install command
and run the ReactJS application using npm start command. A new terminal
is also required to run the static server (for static page management) using npm

run json:server command.

After finishing step 1 (generate web back-end) and step 2 (generate web front-end), the
product is ready to use. An example of the generated product (BisaKita website) is
shown in Figure 6.12. The generated features are (Program) Activity, Income, Expense,

ArusKasReport, (Donation) Confirmation, as defined in the feature selection for BisaKita
(Figure 6.11). A script for automatic deployment is also available to deploy the generated
website on the cloud (server).

Figure 6.12: Product - BisaKita

The product generation steps defined, such as feature selection, generate web back end
and generate web front end can be reused to generate other products. For instance, we
want to create a website for CharitySchool organization. CharitySchool requires two
features, (Program (Activity) and Income). The process is started by defining a new
configuration in FeatureIDE for CharitySchool. Select all required features and choose
’Set As Current Configuration’ to start the product generation for the web back-end,
as defined in step 1(a). Continue to steps 1(b) and 1(c) to finish the generation process. To
generate the web front end for CharitySchool, steps 2(a), (b), (c) and (d) in this section
can be repeated. Since the selected features for CharitySchool product is not the same
as BisaKita, the generated website is also different.

Universitas Indonesia

CHAPTER 7

EVALUATION

The first section of this chapter analyzes the usage of the UML-VM profile in variability
modeling. Then, the UML-VM profile is evaluated using some quality criteria in SPLE. The
second section evaluates the applicability of the UML-VM profile in the MDSPLE process.
In the third section, the degree of automation is measured to evaluate the improvement
quantitatively. We also evaluate the process improvement in the MDSPLE by comparing
the standard (clown-and-own) and this MDSPLE approach in the fouth sections. In the last
sections, we discuss the threats to validity of this research.

7.1 Analysis of Variability Modeling

Variability management is a crucial concern in software product line engineering (SPLE),
an emerging approach to develop software with variations. The domain analysis process is
started with modeling commonality and variability. Common features are implemented
in reusable components, and variations are designed to support mass customization. In
domain implementation, many product variants can be managed in a single development.
Based on the empirical study from Echeverrı́a et al. (2021), SPLE is more efficient than
clone-and-own approach, but the developers spend more time checking actions.

In SPLE, the variability can be modeled using several approaches, such as feature model,
decision model, and orthogonal variability model (OVM). The first research question
analyzes which application artifacts can be modeled as software product lines. We model
the commonality and variability for functional requirements without considering the
variability of non-functional requirements. We use a feature model combined with UML
to model the problem domain and interaction flow modeling language (IFML) to model
the abstract user interface.

Based on a systematic review of evaluation of variability management by Chen & Ali
Babar (2011), most approaches use example application to evaluate their research. Chen &
Ali Babar (2011) found that rigorous analysis is usually applied when formal methods are
used in variability management approaches. The UML-VM profile is defined based on the
VM concept. We rely on the VM formal semantic, which is explained by Damiani et al.

51 Universitas Indonesia

52

(2023). In this section, we use quality criteria for SPL implmentation techniques defined
in Apel et al. (2013) to evaluate the approach: preplanning effort, feature traceability,
separation of concerns, information hiding, granularity, and uniformity. The definition of
these criteria are explained in Section 3.1. We also discuss and compare our approach to
the other MDSPLE approaches for web-based product line development that are explained
in Section 2.4. The results are summarized in Table 7.1.

Table 7.1: Comparison of MDSPLE approach for web-based SPLs

Quality
Criteria

Laguna et
al. (2009)

Alferez &
Pelechano

(2011a)

Vranic &
Taborsky

(2016)

Horcas et al.
(2018)

Horcas et al.
(2022)

This
Approach

Preplanning

effort

new artifacts
and models

new artifacts
and models

new artifacts
and models

new artifacts
and models

new artifacts
and models

new models
and generate

artifacts

Feature

traceability

package
merge

mechanism

weaving
model

feature and
transforma-

tion

variation
point

binding and
references

UML profile
and

configuration
knowledge

Separation

of concerns

intended by
impl.

paradigm

impl.
dependent

intended by
impl.

paradigm

impl.
dependent

impl.
dependent

intended by
impl.

paradigm

Information

hiding

impl.
paradigm
dependent

impl.
paradigm
dependent

impl.
paradigm
dependent

comp.
mechanism
dependent

support at
architectural

level

support at
architectural
and imple-
mentation

levels

Granularity coarse-
grained

coarse- and
medium-
grained

coarse-
grained

all levels all levels coarse- and
medium-
grained

Uniformity enforce
common style

different
styles

different
styles

common style common style common style

• Preplanning Effort. A product variant in an SPL may require a new feature that
does not exist in the existing artifacts. Preplanning should be conducted to address
additional requirements of the new variant. In standard development, a new UML
diagram is created to model a new product variant, and the new features are modeled
in the new UML diagram.

The UML-VM profile is designed based on VM that supports DOP. A new require-
ment or feature in DOP is implemented by defining a delta module. In the UML-VM
diagram, we use the delta-oriented programming paradigm. We do not need to create

Universitas Indonesia

53

a new diagram for each product variant, but we can update existing models by adding
a new delta module. A delta is modeled as a UML package that can add, modify, or
remove existing elements without changing the original model.

The MDSPLE framework in this research is supported by model transformation tools.
The implementation artifacts for a new feature can be generated from the models.
It does not require changes in the code base. Compared to other approaches, the
amount of preplanning in this research is relatively low. Other approaches require
creating new models, changing the code base, or adding new artifacts because they
use different approaches in problem and solution domains.

• Feature Traceability. In SPLE, a feature in the feature model can be implemented
in one or more implementation artifacts. Feature traceability is the ability to trace
the relationship between features in the variability model and their implementation.
Most approaches in Table 7.1 provide a mechanism to maintain traceability, such as
a package merge mechanism in standard Java or mapping features and artifacts in
weaving models, model transformation, or variation points. The mapping mechanism
in these approaches is complicated because the variability is modeled in the problem
domain, but the solution domain uses standard programming languages that do
not expose variability at the implementation level. Herefore, the traceability in the
existing approach could be more challenging to maintain.

This approach uses a dedicated UML profile, namely the UML-VM profile, that
supports good traceability between models and implementation artifacts because
there is a one-to-one mapping between UML-VM stereotypes and VM elements.
The mapping is also implemented as transformation rules in the UML to WinVMJ
tool. The relationship between features and delta modules is also defined in the
configuration knowledge. Therefore, the traceability is well preserved in the problem
and solution domains with support from the UML-VM profile and configuration

knowledge.

• Separation of Concerns. Separation of concerns refers to the strategy of separating
features into several models and implementations based on functionalities. In existing
MDPSPLE approaches for web-based development, the separation of concerns is
managed at the implementation level. Some approaches depend on the programming
paradigm to manage the concerns. In DOP, each delta is designed to implement
specific functionalities. Several delta modules can be composed to realize the
implementation of specific features. Thus, in this approach, the separation of
concerns is intended by the implementation paradigm.

The separation of concerns in this research is also supported at the architectural

Universitas Indonesia

54

level. UML has many kinds of diagrams to model a system from different views
and we use component, class, and package diagrams in the UML-VM profile. Each
diagram has different levels of abstraction to distinguish the concerns. Component
diagrams can be used to model features and product variation. The dependency
between components is modeled in the provided or required interfaces. The UML
class diagram is used in domain design to model variability in more detail. Classes
in the UML-VM diagram are contained in a package with stereotype <<module>>
or <delta>>. The UML package diagram can be used to model the higher level of
abstraction, and each package denotes different concerns in the UML.

• Information Hiding. Information hiding emphasizes the separation of the internal
and external parts of the system by decomposing the artifacts into modules or
components. The internal part is hidden from other modules, and the external
part describes a contract with other modules. As shown in Table 7.1, information
hiding in web-based product line development may depend on the implementation
paradigm or composition mechanism. An approach by Horcas et al. (2022) supports
better information hiding (implementation independent) than others because of the
modeling mechanism. However, this approach does not support information hiding
at the implementation level.

In this research, information hiding is not only supported at the architectural level but
also the implementation level. VM is designed by module concept, so information
hiding is fully supported by specifying which elements should be hidden and which
should be exposed. Modules do not export anything by default, so their elements
are not accessible from other modules. Elements in a module are visible to other
modules when the module exports the name, and then another module can import
the elements. Since the UML-VM profile is defined based on VM, the design of the
UML diagram using the UML-VM profile follows the VM concept.

• Granularity. Granularity specifies the level of variability that can be modeled or
implemented. Annotation based approach usually supports fine-grained granularity
and composition-based approach supports coarse-grained granularity. Approaches
by Horcas et al. (2018, 2022) support all levels of granularity because they combine
annotation and composition approaches. Other approaches only support medium- or
coarse-grained variability.

In our research, the UML-VM profile and DOP implementation support coarse-
and medium-grained variability because delta modules can add, remove, or modify
interfaces, classes, methods, or fields. For example, coarse-grained variability is
managed when a delta module adds a new class. Adding new elements to the UML

Universitas Indonesia

55

class can be considered medium-grained variabilities, such as adding new methods
or fields. The UML diagram in the UML-VM diagram does not model the method’s
implementation. Therefore, the UML-VM profile does not support fine-grained
variability, such as adding a new statement to a method body.

• Uniformity. A general approach should represent all kinds of artifacts based on the
principle of uniformity. Approaches in Table 7.1 use different artifacts representa-
tion. Laguna & Crespo (2013) enforces a common style using UML diagrams for
modeling artifacts. However, Alferez & Pelechano (2011a) and Vranic & Taborsky
(2016) use different styles for representing web-based artifacts. As web applications
have various kinds of artifacts, a generic model is required to represent artifacts in a
similar manner or style. Horcas et al. (2018, 2022) propose a mechanism to model
various web artifacts in a single model.

In this research, we use the UML-VM profile, which models variability in different
levels of abstraction. The variability of features is modeled in the UML component
diagram, the dependency is modeled in the UML package diagram, and the detail
of variability is modeled in the UML class diagram. All these diagrams form the
product line architecture capable of modeling commonality and variability. The
modeling level also supports language-independent implementation. Based on the
UML-VM diagram, any delta-oriented programming techniques can be used in
domain implementation. The IFML diagram that is used to model the abstract UI
also supports uniformity because it represents platform-independent UI artifacts.

7.2 Applicability of the UML-VM Profile

The second objective of this research is defining a unified modeling mechanism for web-

based product line applications. This aim is achieved by defining the UML-VM profile
because several product variants in software product lines can be modeled in a single UML
diagram. One UML diagram with a VM profile (UML-VM diagram) can represent all
variants. Thus, the design for a specific product variant can be derived from the UML-VM
diagram. The second research question, how to model the problem domain of a web-based

product line, is answered by the UML-VM diagram.

Based on the results of this research, the UML-VM profile is applied in the following
processes:

1. Designing the Domain Implementation. We design the domain implementation
based on VM, namely Variability Modules for Java (VMJ). VM is defined based on

Universitas Indonesia

56

the module concept and DOP, which support variability, whereas VMJ is defined
on top of JAVA, which supports object-oriented programming (OOP). The problem
is implementing variability based on DOP in JAVA programming language. VM
elements are already mapped to UML stereotypes in the UML-VM profile. Thus, we
have a bridge between DOP and OOP in the UML-VM profile. The UML-VM profile
is used as a reference in the domain implementation because UML and JAVA are
designed to develop the object-oriented system. Once we have a UML diagram with
VM notation, mapping from the UML-VM diagram to JAVA is more straightforward.
The UML-VM profile contributes to answering the third research question, how to

implement the product line based on the model in the problem domain.

2. Model Transformation Rules. The input for UML to WinVMJ tool is a UML-VM
diagram, and the output is JAVA source code, which follows the structure of the
WinVMJ framework. As described in Section 6.2, the UML-VM profile is used as a
reference in the transformation rules. The model transformation tool produces stubs
of core and delta modules. The method’s implementation is completed manually
because the UML-VM diagram only provides structural aspects without dynamic
behavior. The UML-VM profile is a main ingredient in the model transformation
tool. One-to-one mapping between VM elements and UML stereotypes brings
determinism in transformation rules. The fourth objective in this research, design

model transformation tools to bridge the problem and solution domains, is also
supported by the UML-VM profile.

7.3 Automated Code Generation

The MDSPLE framework is realized in the Prices-IDE tools, as explained in Section 6.1.
Prices-IDE consists of several tools (plugins) to automate the development process, such
as UML to WinVMJ tool (Section 6.2), WinVMJ Composer (Section 6.3), IFML to UI
Generator (Section 6.4). In this section, we measure process improvement by analyzing
the usage of automated code-generation tools. The automation tools may generate partial
or complete source codes. Therefore, we compare the line of codes (LoC) between the
generated source code and the running (complete) source code.

In this experiment, we use the AMANAH case study, as explained in Section 6.5, to
analyze the automation process. We include the implementation of several features for
the measurement, such as Activity, Operational, Income, Expense, FinancialPosition,
ActivityReport, and DonationConfirmation. The measurement is conducted in the following
steps:

Universitas Indonesia

57

1. Generate a WinVMJ (Java) code from the UML-VM diagram using UML to Win-
VMJ Tool. Copy the generated source to a new workspace and complete the source
code (methods’ implementation). Count the total line of codes in the generated
source code and fully implement (complete) the source code.

2. Generate a specific product using WinVMJ composer by selecting the required
features. For example, we generate product CharitySchool that requires features
Activity, Income, Expense, and DonationConfirmation. A new JAVA module repre-
senting product CharitySchool is generated.

3. Generate a JavaScript (React) application from the IFML diagram for product
CharitySchool using IFML UI Generator. We do not complete anything in the
JavaScript application because the IFML UI Generator produces a complete source
code.

Table 7.2 shows the comparison between generated and complete source code. As men-
tioned in the steps above, we count the total line of code produced by automated code
generation. The UML to WinWMJ tool generates partial JAVA source code, around 60%
lines of code are produced. The developer must complete the method’s implementation
because the UML-VM diagram only models the structural (static) behavior of the problem
domain. The WinVMJ composer is able to generate a product module based on selected
features. A running backend application can be derived from the reusable core and delta
modules during product generation. Based on our experiment, the IFML to UI generator
produces a complete JavaScript application from the IFML diagram. Therefore, 100%
JavaScript source code is produced by our tool support.

Table 7.2: Comparison of Generated and Complete Source Code
Tool Input Output LoC Gener-

ated
LoC Com-
plete

UML to WinVMJ UML-DOP
Diagram

Java (Win-
VMJ)

3.089 5.093

IFML to UI Gener-
ator (BisaKita Prod-
uct)

IFML Dia-
gram

JavaScript
JSON
CSS
HTML

6178
31.746
14
20

6178
31.746
14
20

7.4 Process Improvement

We design a scenario for requirements changes in the AMANAH case study to eval-
uate improvement in the development process. Assume that an organization, namely

Universitas Indonesia

58

HeroFoundation, requires a new feature, which does not exist in AMANAH product line.
HeroFoundation needs feature AnnualReports that provides an automatic financial report
for a specific year. First, we add AnnualReports as a new feature in the feature diagram.
Figure 7.1 shows the modification of AMANAH feature diagram (a new feature is denoted
by a red rectangle). Then, we implement the feature using two different approaches, clone

and own and SPLE.

Figure 7.1: A new feature in AMANAH feature diagram

For clone and own approach, we use JAVA web framework (Sring Boot). We implement
the AMANAH case study using Spring Boot and compare the implementation to WinVMJ
to evaluate the process improvement. Then, we also compare how to implement a new
feature in WinVMJ and Spring Boot to analyze the preplanning effort for generating a
new product variant. Ideally, preplanning in SPLE aims to minimize the effort to change
existing implementation (Apel et al., 2013).

The comparison of implementing a new feature in WinVMJ and Spring Boot is summarized
in Table 7.3. We categorize the process into four stages: preparation, implementation,

modification, and product generation. At the preparation stage, a new module is created in
WinVMJ. In Spring Boot, we have to create a new project, clone an existing project, and
create a new package. At the implementation stage, the WinVMJ and Spring Boot process
is similar, creating a new class. At the modification stage, WinVMJ uses the decorator
pattern that preserves behavior in the existing classes. In Spring Boot, changes are made
to existing classes, as in the standard clone and own approach. At the product generation
stage, all required classes are generated in WinVMJ, as defined in SPLE. However, a new
main class must be manually developed in Spring Boot.

Based on the process in Table 7.3, WinVMJ requires three new classes to develop a
new product HeroFoundation with a new feature AnnualReports: class Year.java,
decorator class, and (generated) product main class. In SpringBoot, assume there are nine
existing classes to implement the Financial Report feature. To develop a new product,
HeroFoundation, these nine classes are cloned to the new project, and then two new
classes (class Year.java and product main class) are added. Eleven new classes are
created in total. Therefore, the preplanning effort to develop a product variant with a new

Universitas Indonesia

59

Table 7.3: Comparison of Requirements Changes in WinVMJ and Spring Boot
Process WinVMJ (MDSPLE) Spring Boot (Clone and

Own)
Preparation 1. Create a new Java (delta)

module for annual reports
amanah.automaticreport.
annual

1. Create a new Spring Boot
project HeroFoundation
2. Clone existing AMANAH
project to the new Spring Boot
project (HeroFoundation)
3. Create a new package for
annual reports

Implementation 2. Create a new class
Year.java in the model layer
of the new module

4. Create a new class
Year.java in the model layer
of the new package

Modification 3. Create a new decorator
class and add a new method
to group the automatic report
by year in the resource layer
of the module

5. Modify existing class
AutomaticReport.java by
adding a method that imple-
ments annual reports

Product Generation 4. Generate a new
Java (product) mod-
ule amanah.product.
herofoundation

6. Create a new main class
HeroFoundation.java

feature in WinVMJ is lower than the effort in Spring Boot.

7.5 Threats to Validity

In this section, we discuss threats that could affect the validity of this work. We evaluate
the MDSPLE approach based on two categories of validity threats defined by Wohlin et al.
(2012). A case study is used to demonstrate the practical application of MDSPLE using
Prices-IDE. One of the main concerns when using case studies is the validity of the results
and their applicability to other contexts.

7.5.1 Internal Validity

Internal validity concerns the reliability of the results within the experiment environment.
This research results in a running web application generated based on feature selection.
The generated web is validated automatically using tools in the Prices-IDE. The WinVMJ
composer handles the validation of the web back end. If the selected features violate the
constraints, the configuration is failed to save, and the product is not generated. However,

Universitas Indonesia

60

the current UI generator does not have a mechanism for validating the generated front end.
To mitigate this threat, we take the input for generating the UI from product configuration
in FeatureIDE.

Threats to internal validity are related to uncontrolled aspects that may affect the exper-
iment results (Wohlin et al., 2012). We define the uncontrolled aspects based on web
developers’ and users’ perspectives. For the developers, the uncontrolled aspect relates to
the development environment. We develop Prices-IDE on top of Eclipse Modeling Tools.
The operating system, Eclipse’s version, Eclipse plugins, and Java’s version are uncon-
trolled aspects of the developer’s environmental setting. We prepare an Eclipse application
with all required plugins in a single Eclipse to prevent problems during development.

From the web user’s perspective, the uncontrolled aspect relates to the running application.
The generated web is standard JAVA and JavaScript applications. However, we cannot
ensure that the web application runs successfully in any web server or cloud provider. The
uncontrolled aspects are the web application’s environment, such as database connectivity,
deployment, and server. To mitigate this threat, we have to define a deployment architecture
or automated deployment script for software product lines. Therefore, the problem during
deployment can be prevented.

7.5.2 External validity

External validity refers to the generalizability of experiment conditions (Wohlin et al.,
2012). We must ensure that the experiment outcome from one environment can be applied
to other environments. Threats to external validity concern the ability to generalize
experiment results to other environments or outside the scope. We analyze the threats from
two perspectives: the case studies and the organizational culture.

First, from the case study perspective, we applied the MDSPLE approach to two running
examples. In Section 6.5, we show the applicability of the MDSPLE approach using a
case study charity organization (AMANAH) web application. We also use the MDSPLE
approach to develop another case study, the Bank Account product line. Bank Account
is a generic case for SPLE, not a web application, used by Hähnle (2013) and Thüm et
al. (2012). We also develop the Bank Account product line using the proposed MDSPLE
approach. The approach can be applied to various domains, not only a web application.
Generalization in other domains does not require additional experimental activities.

The MDSPLE approach is also used to develop other case studies, such as manufacturing
software in SCM (Komarudin et al., 2021), e-Shop microservices applications (Setyautami
et al., 2020), payment gateway (Koesnadi et al., 2022). Komarudin et al. (2021) and

Universitas Indonesia

61

Setyautami et al. (2020) use ABS language in the domain implementation, while this
research and (Koesnadi et al., 2022) use DOP implementation with VMJ. Therefore,
different DOP implementations can be used in the MDSPLE approach.

Second, external validity also relates to organizational culture. As the proposed MDSPLE
is a novel approach to developing web applications, we cannot control the developers’
preferences. Clone and own is still profitable in the industry, and sometimes, the setup cost
of SPLE is higher upfront. Although the MDSPLE approach provides a framework and
tools for developing various web applications in a single development, utilization of this
framework in industrial practice could not be generalized.

Universitas Indonesia

CHAPTER 8

CONCLUSION AND FUTURE WORK

This research presents a model-driven software product line engineering (MDSPLE)
framework based on delta-oriented programming (DOP). In this chapter, we revisit the
research questions and conclude to what extent our research results have answered the
questions. We also discuss and propose potential directions for future work.

8.1 Conclusion

Pohl et al. (2005) emphasize that the maturity of the software development process plays
a crucial role in the successful adoption of SPLE. Therefore, it is essential to have a
well-defined and structured software development process that is clear for developers. In
this research, we have presented the MDSPLE framework based on DOP, as detailed in
Chapter 4. This framework encompasses both the problem and solution domains and is
supported by modeling extensions and automation tools.

In addressing the first research question regarding which artifacts of a web application can
be modeled as a product line, we have analyzed that variability can exist not only in the
web backend and frontend, but also in other aspects such as database systems, deployment
servers, and operating systems. However, modeling all aspects of web applications as
variability raises complexities in the feature selection process. Multi-stage configuration
might be required if a product line models variability in multiple aspects. In our research,
we decide to model variability related to user requirements by modeling the web backend
and frontend as SPL.

To address the second research question concerning the modeling of the problem domain,
we have introduced the UML-VM profile as an extension of UML diagrams. By standard-
izing the modeling notations, developers can effectively model variability in UML. The
UML-VM profile maps variability model (VM) elements to UML stereotypes. A single
UML diagram can capture the variability of multiple products in the SPL, and specific
product variants can be derived based on selected features. The second research objective,
define a unified modeling mechanism for delta-oriented software product lines, is achieved.

The third research question, focused on implementing the product line based on the model

62 Universitas Indonesia

63

in the problem domain, is addressed through the variability modules for Java (VMJ). VMJ
serves as an architectural pattern in JAVA for the domain implementation based on DOP.
The FeatureIDE tool is extended to manages product configuration based on selected
features. The third objective of this research is achieved because VMJ is used in the
domain implementation to generate a running application.

To address the fourth research objective of designing a model transformation that bridges
the problem and solution domains, we have developed a model transformation tool from
UML-VM diagrams into WinVMJ source code. The UML-VM profile is used as a
reference for transformation rules. The transformation rules are implemented within the
model transformation tool. Our experiments have demonstrated the successful generation
of source code (solution domain) from the UML diagrams (problem domain).

The MDSPLE framework is supported by various tools such as diagram editors, model
transformation tools, and product line generators. To achieve the fifth research objective of
integrating code generation and product derivation processes, we have designed Prices-
IDE, an integrated development environment for web-based product lines. The theoretical
concept of the MDSPLE framework can be applied to any domain, but with the current
tool support, we have illustrated the practical application of Prices-IDE through a case
study (web application).

8.2 Future Work

The following areas of future work can be explored based on the research conducted in
this study:

1. Extending the UML-VM profile and transformation tools to include modeling of
dynamic behavior in the UML-VM diagram would enhance the completeness of the
generated source code. It should be possible to model the dynamic behavior using
UML activity diagrams, UML sequence diagrams, or BPMN.

2. Integrating automated feature extraction and variability identification into the MD-
SPLE approach would streamline the requirements engineering process. We have
designed a UML-VM profile in this research, so the feature extraction result from
various artifacts could be represented as a unified model.

3. Incorporating software analysis and verification techniques, such as type checking,
model checking theorem proving, or static analysis, into the MDSPLE process would
ensure the correctness and reliability of generated products.

Universitas Indonesia

REFERENCES

Alferez, G. H., & Pelechano, V. (2011a). Context-aware autonomous web services in
software product lines. In 2011 15th international software product line conference

(p. 100-109). doi: 10.1109/SPLC.2011.21

Alferez, G. H., & Pelechano, V. (2011b). Systematic reuse of web services through
software product line engineering. In 2011 ieee ninth european conference on web

services (p. 192-199). doi: 10.1109/ECOWS.2011.13

Apel, S., Batory, D., Kästner, C., & Saake, G. (2013). Feature-oriented software product

lines. Berlin: Springer-Verlag. doi: 10.1007/978-3-642-37521-7

Arboleda, H., & Royer, J. C. (2012). Model-Driven and Software Product Line Engineering.
London: Wiley-ISTE.

Aziz, A., Setyautami, M. R. A., & Azurat, A. (2019, Oct). A web-based software product
line engineering framework. In 2019 international conference on advanced computer

science and information systems (icacsis) (p. 21-26). IEEE.

Brambilla, M., Cabot, J., & Wimmer, M. (2012). Model-Driven Software Engineering in

Practice. Morgan & Claypool. doi: 10.2200/S00441ED1V01Y201208SWE001

Brambilla, M., & Fraternali, P. (2015). Interaction Flow Modeling Language Model-Driven

UI Engineering Web and Mobile Apps with IFML. USA: Elsevier.

Brambilla, M., Mauri, A., & Umuhoza, E. (2014). Extending the interaction flow modeling
language (IFML) for model driven development of mobile applications front end. In
I. Awan, M. Younas, X. Franch, & C. Quer (Eds.), Mobile web information systems (pp.
176–191). Cham: Springer International Publishing.

Chen, L., & Ali Babar, M. (2011). A systematic review of evaluation of variability
management approaches in software product lines. Information and Software Technology,
53(4), 344-362. (Special section: Software Engineering track of the 24th Annual
Symposium on Applied Computing) doi: https://doi.org/10.1016/j.infsof.2010.12.006

Clements, P., & Northrop, L. M. (2002). Software Product Lines: Practices and Patterns.
Boston, MA: Addison-Wesley.

64 Universitas Indonesia

65

Czarnecki, K., Antkiewicz, M., Kim, C. H. P., Lau, S., & Pietroszek, K. (2005). Model-
driven software product lines. In Companion to the 20th annual acm sigplan conference

on object-oriented programming, systems, languages, and applications (pp. 126–127).
New York, NY, USA: ACM. doi: 10.1145/1094855.1094896

Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M., & Paolini, L. (2021). Variability
Modules for Java-like Languages. In Proceedings of the 25th ACM International Systems

and Software Product Line Conference - Volume A (p. 1–12). New York, NY, USA:
Association for Computing Machinery. doi: 10.1145/3461001.3471143

Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M., & Paolini, L. (2023). Variability
Modules. Journal of Systems and Software, 195, 111510. doi: https://doi.org/10.1016/
j.jss.2022.111510

Echeverrı́a, J., Pérez, F., Panach, J. I., & Cetina, C. (2021). An empirical study of
performance using clone & own and software product lines in an industrial context.
Information and Software Technology, 130, 106444. doi: https://doi.org/10.1016/
j.infsof.2020.106444

Fadhlillah, H. S., Adianto, D., Azurat, A., & Sakinah, S. I. (2018). Generating Adaptable
User Interface in SPLE: Using Delta-Oriented Programming and Interaction Flow
Modeling Language. In Proceedings of the 22nd international systems and software

product line conference - volume 2 (p. 52–55). New York, NY, USA: ACM.

Febrian, S. T. (2022). Integrasi FeatureIDE dan WinVMJ Framework untuk Pengem-

bangan Perangkat Lunak dengan Software Product Line Engineering (Master Thesis).
Universitas Indonesia, Depok, Indonesia.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M. (1994). Design Patterns: ”Elements

of Reusable Object-Oriented Software”. Addison-Wesley.

Groher, I., & Völter, M. (2009). Aspect-oriented model-driven software product line
engineering. LNCS Trans. Aspect Oriented Softw. Dev., 6, 111–152. doi: 10.1007/
978-3-642-03764-1\ 4

Hähnle, R. (2013). The abstract behavioral specification language: A tutorial introduction.
In E. Giachino, R. Hähnle, F. S. de Boer, & M. M. Bonsangue (Eds.), Formal methods

for components and objects: 11th international symposium, fmco 2012, bertinoro, italy,

september 24-28, 2012, revised lectures (pp. 1–37). Berlin, Heidelberg: Springer Berlin
Heidelberg. doi: 10.1007/978-3-642-40615-7 1

Universitas Indonesia

66

Hayat, Z., Rashid, M., Azam, F., Rasheed, Y., & Waseem Anwar, M. (2021). Extension
of Interaction Flow Modeling Language for Geographical Information Systems. In
2021 10th international conference on software and computer applications (p. 186–192).
New York, NY, USA: Association for Computing Machinery. doi: 10.1145/3457784
.3457814

Hernández-López, J.-M., Juaréz-Martı́nez, U., & Sergio-David, I.-D. (2018). Automated
software generation process with SPL. In J. Mejia, M. Muñoz, Á. Rocha, Y. Quiñonez,
& J. Calvo-Manzano (Eds.), Trends and applications in software engineering (pp. 127–
136). Cham: Springer International Publishing. doi: 10.1007/978-3-319-69341-5 12

Horcas, J. M., Cortiñas, A., Fuentes, L., & Luaces, M. R. (2018). Integrating the
common variability language with multilanguage annotations for web engineering. In
Proceeedings of the 22nd international systems and software product line conference

- volume 1, SPLC 2018, gothenburg, sweden, september 10-14, 2018 (pp. 196–207).
ACM. doi: 10.1145/3233027.3233049

Horcas, J. M., Cortiñas, A., Fuentes, L., & Luaces, M. R. (2022). Combining multiple
granularity variability in a software product line approach for web engineering. Inf.

Softw. Technol., 148, 106910. doi: 10.1016/j.infsof.2022.106910

Johnsen, E. B., Hähnle, R., Schäfer, J., Schlatte, R., & Steffen, M. (2012). ABS: A
core language for abstract behavioral specification. In B. K. Aichernig, F. S. de Boer,
& M. M. Bonsangue (Eds.), Formal methods for components and objects. Berlin,
Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-642-25271-6\ 8

Kastner, C., Thum, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F., & Apel, S.
(2009). FeatureIDE: A tool framework for feature-oriented software development. In
Proceedings of the 31st international conference on software engineering (pp. 611–614).
Washington, DC, USA: IEEE Computer Society. doi: 10.1109/ICSE.2009.5070568

Koesnadi, E. S., Setyautami, M. R. A., & Azurat, A. (2022). Domain Analysis of Payment
Gateway Product Line. In 2022 International Conference on Information Technology

Systems and Innovation, ICITSI 2022 - Proceedings. IEEE.

Komarudin, O., Arrumaisha, H., & Azurat, A. (2021, mar). Design and Realisation of
Reusable Artefacts for Internal Supply Chain Management in Manufacturing Company.
Journal of Physics: Conference Series, 1811(1), 012091. doi: 10.1088/1742-6596/1811/
1/012091

Universitas Indonesia

67

Koscielny, J., Holthusen, S., Schaefer, I., Schulze, S., Bettini, L., & Damiani, F. (2014).
DeltaJ 1.5: Delta-oriented programming for Java 1.5. In Proceedings of the 2014 inter-

national conference on principles and practices of programming on the java platform:

Virtual machines, languages, and tools (pp. 63–74). New York, NY, USA: ACM. doi:
10.1145/2647508.2647512

Krueger, C. W. (2002). Easing the transition to software mass customization. In F. van der
Linden (Ed.), Software product-family engineering (pp. 282–293). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Laguna, M. A., & Crespo, Y. (2013). A systematic mapping study on software product
line evolution: From legacy system reengineering to product line refactoring. Science of

Computer Programming, 78(8), 1010–1034. doi: 10.1016/j.scico.2012.05.003

Laguna, M. A., González-Baixauli, B., & Hernández, C. (2009). Product line develop-
ment of web systems with conventional tools. In Web engineering, 9th international

conference, ICWE 2009, san sebastián, spain, june 24-26, 2009, proceedings (Vol. 5648,
pp. 205–212). Springer. doi: 10.1007/978-3-642-02818-2\ 16

Martinez, J., Lopez, C., Ulacia, E., & del Hierro, M. (2009). Towards a model-driven
product line for web systems. In 5th international workshop on model-driven web

engineering (mdwe). CEUR-WS.org.

Martinez, J., Ziadi, T., Bissyandé, T. F., Klein, J., & l. Traon, Y. (2015, Nov). Automating
the extraction of model-based software product lines from model variants (t). In 2015

30th ieee/acm international conference on automated software engineering (ase) (p. 396-
406). doi: 10.1109/ASE.2015.44

Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., Leich, T., & Saake, G. (2017). Mastering

software variability with featureide. Springer. doi: 10.1007/978-3-319-61443-4

Muhammad, R., & Setyautami, M. R. (2016, Oct). Automatic model translation to UML
from software product lines model using UML profile. In 2016 international conference

on advanced computer science and information systems (icacsis) (pp. 605–610). IEEE.

Naily, M. A., Setyautami, M. R. A., Muschevici, R., & Azurat, A. (2018). A framework
for modelling variable microservices as software product lines. In Lecture notes in

computer science (including subseries lecture notes in artificial intelligence and lecture

notes in bioinformatics) (Vol. 10729 LNCS). doi: 10.1007/978-3-319-74781-1 18

Nerome, T., & Numao, M. (2014). A product domain model based software product line
engineering for web application. In Second international symposium on computing and

Universitas Indonesia

68

networking, CANDAR 2014, shizuoka, japan, december 10-12, 2014 (pp. 572–576).
IEEE Computer Society. doi: 10.1109/CANDAR.2014.105

OMG. (2015). Interaction Flow Modeling Language [Computer software manual]. Re-
trieved from http://www.omg.org/spec/IFML/1.0/

OMG. (2017). OMG Unified Modeling Language (OMG UML) Version 2.5.1 [Computer
software manual]. Retrieved from https://www.omg.org/spec/UML/2.5.1/PDF

Ouali, S., Kraı̈em, N., Al-Khanjari, Z., & Baghdadi, Y. (2013). A model driven software
product line process for developing applications. In X. Franch & P. Soffer (Eds.),
Advanced information systems engineering workshops - caise 2013 international work-

shops, valencia, spain, june 17-21, 2013. proceedings (Vol. 148, pp. 447–454). Springer.
doi: 10.1007/978-3-642-38490-5\ 40

Pohl, K., Bockle, G., & van der Linden, F. (2005). Software Product Line Engineering:

Foundations, Principles, and Techniques. Berlin: Springer-Verlag. doi: 10.1007/
3-540-28901-1

Prayoga, H. A. (2020). ”WinVMJ: Web framework berbasis variability modules for java

untuk software product line engineering” (Bachelor Thesis). Universitas Indonesia,
Depok, Indonesia.

Rohma, I. A. (2022). ”pengembangan eclipse plug-in untuk ui generator pada software

product line engineering” (Bachelor Thesis). Universitas Indonesia, Depok, Indonesia.

Roubi, S., Erramdani, M., & Mbarki, S. (2016). Extending graphical part of the Interaction
Flow Modeling Language to Generate Rich Internet Graphical User Interfaces. In 2016

4th international conference on model-driven engineering and software development

(modelsward) (p. 161-167).

Samuel, C. (2022). Penyempurnaan fitur dan library software product line engineering

framework winvmj (Bachelor Thesis). Universitas Indonesia, Depok, Indonesia.

Santoso, C. L. (2023). Static page management dan perbaikan interaction flow modeling

language untuk memodelkan software product line (Bachelor Thesis). Universitas
Indonesia, Depok, Indonesia.

Schaefer, I., Bettini, L., Bono, V., Damiani, F., & Tanzarella, N. (2010). Delta-oriented
programming of software product lines. In J. Bosch & J. Lee (Eds.), Software product

lines: Going beyond (pp. 77–91). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:
10.1007/978-3-642-15579-6\ 6

Universitas Indonesia

http://www.omg.org/spec/IFML/1.0/
https://www.omg.org/spec/UML/2.5.1/PDF

69

Setyautami, M. R. A. (2013). Applying UML profile and refactoring rules to create

software product line from UML class diagram (Master Thesis). Fakultas Ilmu Komputer
Universitas Indonesia.

Setyautami, M. R. A., Adianto, D., & Azurat, A. (2018). Modeling Multi Software Product
Lines Using UML. In Proceedings of the 22nd international systems and software

product line conference - volume 1 (p. 274–278). New York, NY, USA: Association for
Computing Machinery. doi: 10.1145/3233027.3236400

Setyautami, M. R. A., Fadhlillah, H. S., Adianto, D., Affan, I., & Azurat, A. (2020).
Variability Management: Re-Engineering Microservices with Delta-Oriented Software
Product Lines. In Proceedings of the 24th acm conference on systems and software

product line: Volume a - volume a. New York, NY, USA: Association for Computing
Machinery. doi: 10.1145/3382025.3414981

Setyautami, M. R. A., Fadhlillah, H. S., & Azurat, A. (2021). Prices: Towards web-
based product lines generator. In Proceedings of the 25th acm international systems

and software product line conference - volume a (p. 209). New York, NY, USA:
Association for Computing Machinery. Retrieved from https://doi.org/10.1145/

3461001.3472734

Setyautami, M. R. A., & Hähnle, R. (2021). An Architectural Pattern to Realize Multi
Software Product Lines in Java. In 15th international working conference on vari-

ability modelling of software-intensive systems. New York, NY, USA: Association for
Computing Machinery. doi: 10.1145/3442391.3442401

Setyautami, M. R. A., Hähnle, R., Muschevici, R., & Azurat, A. (2016). A UML
profile for delta-oriented programming to support software product line engineering.
In Proceedings of the 20th international systems and software product line conference

(p. 45–49). New York, NY, USA: Association for Computing Machinery. doi: 10.1145/
2934466.2934479

Setyautami, M. R. A., Rubiantoro, R. R., & Azurat, A. (2019). Model-Driven Engineering
for Delta-Oriented Software Product Lines. In 26th asia-pacific software engineering

conference, APSEC 2019, putrajaya, malaysia, december 2-5, 2019 (pp. 371–377).
Washington, DC, USA: IEEE. doi: 10.1109/APSEC48747.2019.00057

Shahin, G., & Zamani, B. (2021). Extending Interaction Flow Modeling Language as a
Profile for Form-making Systems. In 2021 12th international conference on information

and knowledge technology (ikt) (p. 169-173). doi: 10.1109/IKT54664.2021.9685877

Universitas Indonesia

https://doi.org/10.1145/3461001.3472734
https://doi.org/10.1145/3461001.3472734

70

Sundermann, C., Heß, T., Engelhardt, D., Arens, R., Herschel, J., Jedelhauser, K., . . .
Schaefer, I. (2021). Integration of UVL in FeatureIDE. In Proceedings of the 25th

acm international systems and software product line conference - volume b (p. 73–79).
New York, NY, USA: Association for Computing Machinery. doi: 10.1145/3461002
.3473940

Thüm, T., Schaefer, I., Apel, S., & Hentschel, M. (2012, sep). Family-Based Deductive
Verification of Software Product Lines. SIGPLAN Not., 48(3), 11–20. doi: 10.1145/
2480361.2371404

Vranic, V., & Taborsky, R. (2016). Features as transformations: A generative approach
to software development. Comput. Sci. Inf. Syst., 13(3), 759–778. doi: 10.2298/
CSIS160128027V

Waluyo, F. P. (2022). Integrasi ORM Hibernate Dengan Framework WinVMJ Untuk

Pengembangan Aplikasi Web Berbasis Software Product Line Engineering (SPLE)

(Master Thesis). Universitas Indonesia, Depok, Indonesia.

Wilmarani, A. (2023). Variasi dan kustomisasi antarmuka untuk front-end software product

line pada adaptive information system for charity organization (aisco) (Bachelor Thesis).
Universitas Indonesia, Depok, Indonesia.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., & Wessln, A. (2012).
Experimentation in Software Engineering. New York: Springer Publishing Company,
Incorporated.

Universitas Indonesia

GLOSSARY

Application engineering is the process of software product line engineering in which the
applications of the product line are built by reusing domain artifacts and exploiting
the product line variability.

Configuration knowledge is a mapping between feature model and delta modules.

Core module is a module in DOP that consists of common implementation of a product
line.

Delta module is a module in DOP that implements feature’s variations by adding, remov-
ing, or modifying elements in the core module.

Delta oriented programming (DOP) is a paradigm to implement SPLE by defining a
core module and a set of delta modules.

Domain is an area of knowledge or activity characterized by a set of concepts and termi-
nology understood by practitioners in that area.

Domain analysis is a process for capturing and representing information about applica-
tions in a domain, specifically common characteristics, variations, and reasons for
variation.

Domain engineering is the process of software product line engineering in which the
commonality and the variability of the product line are defined and realized.

Domain implementation is the process of developing reusable artifacts that correspond
to the features identified in domain analysis.

Feature is an end-user visible characteristic of a system, represents typically domain
abstraction.

Feature diagram is a graphical notation to specify a feature model.

Feature model is a list of features and an enumeration of all valid feature combinations.

Feature selection is a process to select required features in the product derivation.

71 Universitas Indonesia

72

Framework is an incomplete set of collaborating classes to be extended for specific
use cases, such as plug-ins for browsers. Components and services are units of
composition with well-defined interfaces which can be composed to build a specific
product.

Mass customization is the large-scale production of goods tailored to individual cus-
tomers’ needs.

Multi product line (MPL) is a set of software product lines that shares commonality and
variability or depends each other.

Platform is any base of technologies (reusable parts) on which other technologies or
processes are built.

Product is deployed software application that is derived from a software product line.

Product derivation is a production step in application engineering, where reusable arti-
facts are combined based on selected features.

Software product line (SPL) is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment.

Software product line engineering (SPLE) is a paradigm to develop applications (soft-
ware products) using platforms (for commonality) and mass customization (variabil-
ity).

UML profile is a mechanism to extend UML notation for specific purposes.

Variability module (VM) is an extension of a software module system that captures
variability at the level of modules.

Variability module for Java (VM) is an architectural pattern to realize the variability
modules (VM) in Java.

Universitas Indonesia

	ABSTRACT
	Table of Contents
	List of Figures
	List of Tables
	List of Codes
	1 Introduction
	1.1 Background
	1.2 Research Questions
	1.3 Research Objectives
	1.4 Research Limitations
	1.5 Research Contributions

	2 Theoretical Foundations
	2.1 Model-driven Software Engineering
	2.2 Software Product Line Engineering
	2.3 Delta-Oriented Programming
	2.4 Related Work

	3 Research Methodology
	3.1 Research Methodology
	3.2 Research Stage

	4 Model-driven SPLE
	4.1 MDSPLE Approach
	4.2 MDSPLE Framework for Web Development
	4.3 The UML-DOP Profile
	4.4 The IFML-DOP Extension

	5 Variability Modules for Java
	5.1 Variability Module
	5.2 Architectural Pattern in Java
	5.2.1 Decorator Pattern
	5.2.2 Factory Pattern

	5.3 UML-VM Profile

	6 Prices-IDE
	6.1 Prices-IDE Design
	6.2 UML to WinVMJ Tool
	6.3 FeatureIDE WinVMJ Composer
	6.4 IFML to UI Generator
	6.5 Running Example: Charity Organization System
	6.5.1 Domain Analysis
	6.5.2 Domain Implementation
	6.5.3 Product Generation

	7 Evaluation
	7.1 Analysis of Variability Modeling
	7.2 Applicability of the UML-VM Profile
	7.3 Automated Code Generation
	7.4 Process Improvement
	7.5 Threats to Validity
	7.5.1 Internal Validity
	7.5.2 External validity

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	References
	Glossary

